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“Dynamic” duo for Sea Ice

Dynamics                            Thermodynamics

• Fast 
• Rough

• Slow 
• Smooth

Perovich, 2012, FAMOS



Overview

• Numerical models 

◦ solution techniques specific to 
sea-ice models 

◦ implicit solvers 

▪ Picard/fixed point/FGMRES, 
JFNK 

◦ explicit solvers: 
▪ EVP, mEVP, aEVP  
▪ EAP 

◦ new rheologies 
◦ Discrete Element Models

• (very short) Introduction: Sea ice in the climate system

• Sea ice models in ECCO -> Ian’s talk   • Biogeochemistry in sea ice models

• Thermodynamics  

◦ heat balance 

◦ heat capacity 

◦ zero-layer, multi-layer models 

◦ salinity, brine, enthalpy 

◦ Snow on ice 

◦ advection 

◦ ice thickness distribution 

• Dynamics 

◦ continuum assumption 

◦ momentum equations 

◦ surface stress 

◦ divergence of internal stress 

◦ rheology, isotropy, anisotropy, 
Viscous-Plastic, Maxwell-Elasto-
Brittle, Mohr-Coulomb 

◦ ice thickness distribution and 
ridging



Sea ice model equations
• dynamics (momentum equations) 

• advection of sea ice (thickness, concentration, salinity, other tracers) 

• thermodynamics (heat balance, albedo, ice growth, melt, sub-grid 
ice thickness distributions, melt-ponds, …): Sh, Ss, Sc

• Redistribution (Ridging) 
• For a review of sea ice modeling: Hunke et al. (2010), Lemieux et al. 

2017 (book chapter)Flowchart stolen from 
 https://nsidc.org/cryosphere/seaice/study/modeling.html
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thermodynamics: heat balance

• ice-enthalpy includes heat and chemical potential (salinity) 

• often simply:  
• with boundary conditions
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Stefan’s law of ice growth (following Leppäranta, 1993)

• assumptions:  
- no thermal inertial: E = 0 
- no internal heat source: Q = 0 
- no heat flux from ocean: Qw = 0  
- known surface temperature 

➡ constant temperature profiles 
(0-layer mode): 
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Sea ice model equations: “0-layer thermodynamics”

• no internal heat source: Q = 0 
• no thermal inertia => instantaneous temperature adjustment 

• only surface  boundary conditions remain: 
• with
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Sea ice albedo for

• simple parameterisations with albedo for ice and snow in 
freezing (brighter) or melting (darker) conditions 

• use melt-pond physics to estimate albedo (e.g., Taylor and 
Feltham, 2004, Flocco and Feltham, 2007)  

• effects of ageing snow and ice, multiple-scattering, absorptive 
effects of inclusions such as dust and algae 
(biogeochemistry!) 

• important tuning parameter

QSW↓(1 − α)



Snow on sea ice

• snow is a very good insulator: 
- changes surface albedo 
- usually limits shortwave penetration 
- changes vertical diffusion of temperature (from continuity at 

interface, e.g. Leppäranta, 1991) in 0-layer model: 

• snow-ice: refreezing of flooded snow on sea ice, especially in 
Antarctica

κeff =
κice κsnow

κsnow hice + κice hsnow



going back to more general thermodynamics

• ice-enthalpy 

• Simplest model is a three-layer model (two ice layers, one 
snow layer, e.g. Winton, 2000), more layers (Bitz and 
Lipscomb, 1999) used CICE/ICEPACK. 

• any excess conductive heat flux (k∂T/∂z) through the ice leads 
to freezing or melting: change of volume Sh (=dh/dt)

• Hibler (1979): lateral freezing and melting
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ice thickness distribution (static)

• thick ice (especially with a snow layer) is a good insulator and limits new 
ice growth 

• simple parameterization scales distribution by mean thickness to always 
allow thin ice

21 
 

Figures 691 

a)                                                              b) 692 

 693 
Fig. 1 – Schematic representation of the different snow parameterizations evaluated in this 694 
study: a) “snow-homog”, homogeneously distributed and independent on the ice category and 695 
b) “snow-pdf”, distributed accordingly and proportionally to the different ice categories pdf. 696 
 697 

 698 

a)                                                                             b) 699 

 700 
Fig. 2 – Probability density functions depicting sea ice thickness categories for 7 ice classes 701 
homogeneously distributed (grey bars in a and b) and overlaid realistic distributions in the 702 
Arctic Ocean from airborne EM-bird measurements for a) one field campaign (ARKXXVI/3) 703 
and b) a compilation from 120 field campaigns. The scale in the x-axis in both figures 704 
corresponds only to the blue bars. 705 
 706 
 707 
 708 

“snow-homog” “snow-pdf”

images: Castro-Morales et al. (2014)
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dynamic ice thickness distribution: redistribution + ridging

• ice concentration equation is replaced by an equation for 
thickness distribution function g(h)

Confidential manuscript submitted to JGR-Oceans

Figure 4. Semi-logarithmic plot of average ice draft hd or ice and snow thickness ht against probability

density in each category for three regional ITD. Blue crosses for model values, red lines for observations. The

dashed black lines indicate exponential fits to the model results.
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Figure 5. Example of variability in ITDs on small local scales. Plotted are ITDs from 50km submarine

track segments (red line) with a snapshot from the nearest grid cell (blue bars). All five observations are taken

in Fram Strait in spring (S5).

407

408

409

–17–

from Ungermann and Losch (2018)red: observations, blue: model
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Dynamics and Deformation

 (RGPS data near SHEBA drift station, 1997, R. Kwok)



Sea Ice Deformation

ice compression and shear: 
ridges, rubble fields

breaking ice: 
cracks, leads



Importance of sea ice deformations
• Affect the thickness distribution through formation of ridges and leads. 
• Heat flux through new leads is 1-2 orders of mag higher than over thick ice 

(Maykut, 1978)   
• 25-40% of new ice formation occurs in leads (Kwok, 2006) 
• Ridges affect the air-ice and ice-ocean drag 
• Ocean upwelling associated to shear

McPhee et al., 
 2005



Digression: Newtonian Fluid

1. Fluid is continuous + stresses are a linear function of the 
strain rates 

2. Fluid is isotropic 
3. In the limit where the strain rates go to zero, the stresses 

must reduce to the hydrostatic pressure

ρ
du
dt

= ∇ ⋅ σ + R, R = other terms

for PE (ocean): σ = ν∇u − p ⇒ ∇ ⋅ σ = ∇(ν∇u − p)

strain rates (∇u)ij =
1
2 ( ∂ui

∂xj
+

∂uj

∂xi )



Sea ice is different (AIDJEX model)

• ensemble of many ice floes with interactions 
• continuity assumption at large scales (questionable) 
• non-Newtonian (non-normal) fluid (honey vs. mayonnaise) 
• strong in compression, weak in tension, intermediate in shear 
• elastic response to small perturbations, plastic to large pert. 
• => plastic-elastic model (Coon 1974) 
• viscous-plastic framework is similar, but numerically simpler 

(Hibler 1977, 1979), small strain rates lead to viscous creep. 
• granular material (like sand: floes = grains) => Mohr-Coulomb 

law of failure relates shear to normal stress: τ = μσ + c



Stress tensor

• assumption: symmetric  
• Mohr-Coulomb law:

⇒ σ21 = σ12

σ = (σ11σ21
σ12σ22) = (σxxσyx

σxyσyy) ⇒ (σ1 0
0 σ2)

principle stresses
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σ11 + σ22

2
± (σ11 − σ22)2

4
+ σ12σ21

normal stress σ
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1
2

(σ1 + σ2) =
1
2

(σ11 + σ22)

shear stress τ

σII =
1
2

(σ1 − σ2) =
1
2

(σ11 − σ22)2 + 4σ12σ21

τ = μσ + c or σII = μσI + c/2



principal stress plane and yield curve, plastic limit

σ = (σ11σ21
σ12σ22) ⇒ (σ1 0

0 σ2) ⇒ σI and σII

elliptical yield curve: F = ( σI + P/2
P/2 )

2
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− 1 = 0
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consequence: sea ice dynamics are very non-linear

m
∂u
∂t

= ∇ ⋅ σ + R, R = other terms

with σij =
P

2Δ {2 ·ϵij e−2 + [(1 − e−2)( ·ϵ11 + ·ϵ22) − Δ] δij}
with abbreviations
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∞
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ice strength parametrizations:



Sea ice dynamics and solvers

• Picard solvers (LSR, Krylov) 
• JFNK solver 
• EVP solvers: mEVP, aEVP 

• new MEB rheology 

• discrete element models (DEM)



solution techniques: Picard method

• traditional method, e.g., PSOR, Hibler (1979), LSOR, Zhang 
and Hibler (1997), (Gauss-Seidel) for linear solver 

• Krylov method for linear solver (Lemieux and Tremblay, 
2009), requires preconditioner 

• stable, but slow

A(u) ⋅ u = b
⇒ solve A(un−1) ⋅ un = b



F(x)

xx0x1x2x3

solution techniques: JFNK solver

• better (quadratic) convergence near minimum (Lemieux et al. 2010, 
2012, Losch et al 2014) 

• preconditioner for Krylov solver necessary 
• expensive 
• unstable, especially at high resolution 
• stabilization (e.g. Mehlmann and Richter 2017, involves mixing JFNK and 

Picard methods)

F(u) = A(u) ⋅ u − b

F(un) = F(un−1) + F′�

un−1

δu != 0

⇒ solve F′�n−1 δu = − F(un−1) ⇒ un = un−1 + δu



Picard vs. JFNK

structures [8]. Fig. 4 illustrates what we mean by sharp solution structures. It shows the shear deformation field on 7 January
1990 08Z simulated by the JFNK solver when using the 10-km resolution model and a cnl of 0.001. The shear deformation

(second strain rate invariant) is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@u
@x !

@v
@y

" #2
þ @u

@y þ
@v
@x

" #2
r

. As in Maslowski and Lipscomb [28], who used a model

with about the same spatial resolution (9 km), our model simulates basin scale linear kinematic features that resemble
the observed ones [29]. Note that the existence of these strong velocity gradients is physically based (VP rheology) and is
not a consequence of residual errors in the velocity field approximate solution.

Note that for the JFNK solver, the computational efficiency and failure rate depend on the chosen value of rest (Eq. (25))
and that some tuning might slightly modify these results. A larger rest tends to increase the computational efficiency and the
failure rate.

The lack of convergence (failures) of the JFNK solver and the standard solver is a global convergence issue. When the ini-
tial iterate is ‘‘sufficiently close” to the solution, the solvers always converge. The quality of the initial iterate is determined
by the time step compared to the forcing time scale and to the level of convergence of the previous time step solution. A 1-
month integration at 40-km resolution with a 1-minute time step (44,640 time steps) for cnl ¼ 0:001 shows that both solvers
always converge. Unfortunately, the use of such a small time step represents a prohibitive computational approach. We have
not investigated what is the maximum time step allowed (between 1 and 30 min at 40-km resolution) for the solvers to con-
verge in all cases.

To illustrate the high convergence rate of the JFNK method as opposed to the ones of Stand-cap and Stand-tanh, Fig. 5
shows the residual norm of the nonlinear system of equations as a function of the iteration (Newton iteration or OL iteration)
down to a small residual norm ð10!6Þ. This typical result is for 1 January 1990 18Z. The Stand-cap solver needs in this case
2631 OL iterations to reach a residual norm of 10!6 while it takes 24 Newton iterations for JFNK to satisfy the same criterion.
This might suggest that JFNK is more than a 100 times faster than the Stand-cap solver. This is however not the case because
one JFNK iteration involves more calculation (in the fast phase) than one OL iteration. JFNK is & 23 times faster than the
Stand-cap solver to reach a residual norm of 10!6. Compared to the Stand-tanh solver, JFNK is 6.4 times faster. The required
CPU time for JFNK is 2.41 s, 15.49 s for Stand-tanh and 55.07 s for Stand-cap.

Even though the convergence rate of the JFNK solver is high (especially in the fast phase), it is not quadratic because an
inexact Newton approach is used. Asymptotic quadratic convergence could be possible but at the expense of very small cðkÞ
values [8].

5.2. Discussion about the robustness of the standard and JFNK solvers

Both standard and JFNK solvers show a lack of robustness. Moreover, the failure rate for both solvers increases as the grid
is refined. However, the lack of robustness of the solvers might not be so dramatic for practical considerations. First, cnl ¼ 0:2
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Fig. 5. Residual norm (N m!2) of the nonlinear system of equations as a function of the OL iteration (or Newton iteration) on 1 January 1990 18Z. The spatial
resolution is 40 km.
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Lemieux et al (2010)



Does it matter?

after nearly 40 years of simulation: average of Oct, 1995

Losch et al. (2014)



solution method: EVP variants

• Hunke and Dukowicz (1997) 
• does not converge (definitely not to VP, Lemieux et al. 2012, Losch and 

Danilov 2012) 
• adding inertial term to momentum equations fixes convergence 

(Lemieux et al. 2012, Bouillon et al 2013) 
• m(odified)EVP, a(daptive)EVP (Kimmritz et al 2015, 2016, 2017)

σij =
P

2Δ {2 ·ϵij e−2 + [(1 − e−2)( ·ϵ11 + ·ϵ22) − Δ] δij}
⇔ ( 1

E

∂σij

∂t
+) Δe2

P
σij + [ Δ(1 − e2)

2P
(σ11 + σ22) +

Δ
2 ] δij = ·ϵij



issues with conventional EVP
Author's personal copy

solver with Nsub = 120 are shown on Fig. 8c and d while Fig. 8e and f are for Nsub = 1920. The advective time step for the EVP is
Dt = 20 min. Similarly to what is shown in [11], increasing Nsub eliminates noise in the deformation fields. An example of this
can be clearly seen if we zoom on the area north of Greenland (Fig. 9a and b). In the southern part of this region, the noise
disappears in the divergence field and the ice becomes very rigid (as seen in the reference solution). However, in the region
further north, the noise disappears but is replaced by bands of convergence that are not seen in the reference solution. By
comparing Fig. 8e and f to Fig. 8a and b, it is obvious that these additional deformations are seen at many places in the do-
main. These arch-like deformations in the EVP approximate solution are similar to the ones obtained by [33] with their 9-km
EVP model. Hence, the EVP solver with Nsub = 1920 captures the general pattern of deformations but leads to additional shear
lines and zones of strong divergence/convergence when compared to the reference solution. This is consistent with the
results of [13]: the EVP simulates a weaker ice cover as it deforms more easily. The shear and divergence fields simulated
by JFNK (cnl ¼ 10"3; Dt ¼ 20 min) are very similar to the reference solution deformation fields (not shown).

Fig. 8. Shear (a) and divergence (b) at 10-km resolution obtained with the Picard solver with cnl ¼ 10"06 and advective time step of 10 s (the reference
solution) on 18 January 2002 00Z. Shear (c) and divergence (d) obtained with the EVP with 120 subcycles. Shear (e) and divergence (f) obtained with the EVP
with Nsub ¼ 1920 on 18 January 2002 00Z. The advective time step for the EVP solver is 20 min. For clarity, the shear is capped to 0.2 day"1 and the
divergence to ±0.05 day"1.

5940 J.-F. Lemieux et al. / Journal of Computational Physics 231 (2012) 5926–5944

Lemieux et al. (2012), shear and divergence (per day)

reference

EVP, 120 sub-cycles

EVP, 1980 sub-cycles
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We also performed the following simulations to further investigate the presence of extra deformations in the EVP approx-
imate solution. The model was run for 10 days (17–27 January 2002) with either the JFNK or EVP solver. The spatial resolu-
tion is 10 km and Dt = 20 min. Because it is a longer simulation, exceptionally this experiment includes thermodynamic
processes. Statistics of deformations were calculated over the whole period based on instantaneous deformations analyzed
every 12 h. Similar to what is done in [18], we calculated the Probability Density Function (PDF) of the absolute divergence
jDj over a subdomain located in the Arctic Ocean. To avoid coastal effects, the size of the subdomain (1900 km ! 1800 km)
was chosen such that the grids cells are at least 100 km away from the land.

Bins of constant size of 2! 10"4day"1 were used to produce the PDF. The first bin includes the values of jDj between 0 and
2! 10"4 day"1, the second one between 2! 10"4day"1 and 4! 10"4 day"1 and so on. With Xi ¼ f1; 3 ;5; . . .g! 10"4day"1

giving the midpoint value of each bin and Yi representing the fraction of jDj values in each bin, Fig. 10 shows log (Yi) as a
function of log (Xi). The blue curve in Fig. 10 shows the PDF for JFNK with cnl ¼ 10"3 while the red and the black curves
are respectively for the EVP solver with either 120 or 1920 subcycles.

These results confirm what can be qualitatively observed on Fig. 8: the EVP simulates a weaker ice cover as it deforms
more easily (both in convergence and divergence, not shown). Interestingly, the PDF for the EVP model changes significantly
when increasing the number of subcycles from 120 to 1920 as it gets closer to a fat tailed distribution. Consistent with the
results of [8] with a Picard solver, we find that the PDF of deformations depends strongly on the level of numerical conver-
gence. It is beyond the scope of this paper to investigate the impact of these extra deformations in the EVP approximate
solution on ice growth, but we speculate that the EVP solver leads to more ice production than an implicit solver (because
openings in the ice cover strongly affect the ice growth).
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Fig. 10. PDF of the absolute divergence for JFNK with cnl ¼ 10"3 (in blue), EVP with 120 subcycles (in red) and EVP with 1920 subcycles (in black). For all
three simulations, the spatial resolution is 10 km and the advective time step is 20 min. The statistics of the absolute divergence (with bins of
2! 10"4day"1) were calculated over a 1900 km!1800 km subdomain centered in the Arctic Ocean.

Fig. 9. Divergence north of Greenland as simulated by the EVP with Nsub ¼ 120 (a) and with Nsub ¼ 1920 (b) on 18 January 2002 00Z. The advective time step
is 20 min. To see the details, the divergence is capped to ±0.025 day"1.
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New EVP equations

based on Lemieux et al. (2012), Bouillon et al. (2013), add “inertial-like” term 
to momentum equations 

now, with 
the discretized equations converge to true (implicit) VP

or explicit, through the EVP formulation (Hunke and Dukowicz, 1997, Hunke113

and Lipscomb, 2008) where adding a pseudo-elastic term reduces the time step114

limitations. A discussion of the convergence issues can be found, for instance,115

in Bouillon et al. (2013), Kimmritz et al. (2015) and is not repeated here.116

The suggestion by Bouillon et al. (2013) is equivalent, up to details of treating117

the Coriolis and the ice-ocean drag terms, to formulating the mEVP method as:118

�p+1 � �p =
1

↵

⇣
�(up)� �p

⌘
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p
⌘
. (5)120

121

In (5), R sums all the terms in the momentum equation except for the rheology122

and the time derivative, �t is the external time step of the sea ice model set by123

the ocean model, the index n labels the time levels of the model time, and the124

index p is that of pseudotime (subcycling step number). The Coriolis term in125

R
p+1/2 is treated implicitly in our B-grid implementation, but is explicit on the126
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New EVP equations
New momentum equations 
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modified EVP:  α, β = constant, order(300) 
adaptive EVP:  α = β = (4γ)1/2

αβ ≫ γ =
P
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Δt
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high resolution simulations



EVP “convergence” (in FESOM)

Koldunov et al. (2019), JAMES 
~ 4 km



EVP “convergence” (in FESOM)

Koldunov et al. (2019), JAMES, grid resolution ~ 4 km



Convergence to 
VP solution: 
ice thickness (m) 
at 4.5 km grid 
spacing
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stability 
parameter 
depends on grid 
spacing and  local 
ice viscosity
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Maxwell Elasto-Brittle rheology

• VP has been criticized for low intermittency and heterogeneity (Girard et 
al 2009, but Hutter et al 2018/2019 show opposite) 

• Dansereau et al (2016): 

- new model variable: damage (actually integrity of sea ice), affects ice 
strength 

- Mohr-Coulomb law for failure (increases damage)  
- VP-viscosities are re-interpreted as constant coefficients; leads to a 

linear problem 
• unclear: optimal solution strategy, computational cost (probably very 

high), stability, coupling to thermodynamics

(τ = μσ + c)

1
E

∂σ
∂t

+
1
λ

σ = K : ·ϵ



not sure if I 
should show 
this



Discrete Element Model: Rabatel et al 2015, JGR



Biogeochemistry in sea ice models

• ice BGC affects attenuation (uptake) of shortwave raditiation 
(albedo; modifies melt rate and availability to ocean), ocean 
BGC through “seeding” with biologically active material 

• simple models for simple sea ice models, e.g. SIMBA 
(Castellani et al. 2017) 

• multilayer models require more sophisticated sea ice models 
with positive definite vertical transport schemes, see 
documentation of “icepack” (column physics and 
biogeochemistry of CICE) 

• numerous feedbacks need to be taken into account



What’s missing and where to go from here
• dynamics 

- explore continuity assumption at high resolution 
- new rheological approaches, anisotropy (EAP) 
- discrete element models for climate research? 
- surface and bottom stress (skin drag, form drag, ice roughness length, etc.) 
- porosity in ridges => ice strength parameterisations (Roberts et al. 2019) 

• thermodynamics (most of this is in CICE/ICEPACK: https://github.com/CICE-Consortium) 
- multiple layers, vertical advection 
- melt pond parameterisations 
- snow parameterisations 
- biogeochemistry 

• coupling to ocean and atmosphere 
• …
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