
Installing and using TAF on Stampede2

Patrick Heimbach

May 29, 2019

Contents

1 Installing TAF 2

1.1 Preliminaries . 2

1.2 The script staf . 2

1.3 Getting access . 3

2 Application: Stommel’s 3-box model 3

2.1 Obtaining the code . 3

2.2 Derivative code generation . 4

2.2.1 Adjoint (or reverse) mode of AD . 4

2.2.2 Tangent linear (or forward) mode of AD 5

2.3 Running the model . 5

2.4 interpreting the output . 5

3 Some comments on the AD-generated code 5

3.1 An example code line and its adjoint . 5

3.2 IF-statements . 6

3.3 Reversal of S/R call sequence . 6

3.4 Store directive and multi-level checkpointing 7

1

1 Installing TAF

TAF stands for Transformation of Algorithms in Fortran. It was created and is distributed
by the company FastOpt (http://fastopt.de).

For the purpose of the ECCO summer school 2019, FastOpt has kindly agreed to provide
free access to TAF for all participants.

FastOpt asks that no code generated during the summer school shall be used beyond the
end of the school.

1.1 Preliminaries

All resources (files and fields) are shared in the ECCO community space on Stampede2.
We assign a variable name to the directory trunk in which they can be found:

communitydir = /work/projects/aci/ECCO/community/

It is useful to make either your $HOME directory or a dedicated sub-dir. (e.g., $HOME/bin/)
part of your search path in your .bashrc. In the following we will assume that you have
no $HOME/bin/.

1.2 The script staf

TAF on Stampede2 is enabled via a script, staf. The script gathers the code to be trans-
formed, sends it to a server at fastopt.com where the source-to-source transformation is
performed, and returns the transformed code back to your local directory from which you
have invoked it.

You can obtain the staf script by copying it from the community space:

copy the staf script to your home dir.

cp $communitydir/bin/staf $HOME/.

The script uses the same arguments as TAF itself. To familiarize yourself with possible
arguments, type

staf -help

You can use staf to download a TAF manual via command

staf -get manual

A very good paper stepping through the essentials of source-to-source code AD is that by
Giering and Kaminski, TOMS, 1998, http://doi.org/10.1145/293686.293695.

2

http://fastopt.de
http://doi.org/10.1145/293686.293695

1.3 Getting access

Use of TAF requires a license. A valid license is enabled via setting up a secure connection
to the Fastopt server. To do so, Fastopt issues a public key that is placed in your folder
$HOME/.ssh/. For the duration of the ECCO Summer School, Fastopt has issued a single
key that will be shared by all students. The key will expire after the end of the school.

To set up and enable staf on Stampede2, follow these steps:

copy the TAF public keys to your $HOME/.ssh/ dir.

cp $communitydir/bin/taf_keys/* $HOME/.ssh/.

Assuming that your $HOME is in your search path, you are now ready to use TAF via the
staf script. To test this, do the following:

staf -test

The result should be a message

Transformation of Algorithms in Fortran (TAF)

Copyright 2000-2019 FastOpt GmbH, Hamburg, Germany

All rights reserved.

URL: http://www.FastOpt.de, Email: info@FastOpt.de

script to access TAF remotely version 4.0

Your access to TAF is enabled

2 Application: Stommel’s 3-box model

This application uses Stommel’s 3-box model, consisting of a surface equator-to-subpolar
cell, a deep equator-to-subpolar cell, and a polar (top-to-bottom) cell.

2.1 Obtaining the code

We have provided a Fortran code of the 3-box model in the community space. To obtain
it, do the following on your terminal.

go to your work directory

cd $WORK/../

anticipating more adjoint examples, we create a base directory

mkdir adjoint_examples/

cd adjoint_examples/

now get a local copy of the box model code

cp -r $communitydir/adjoint_examples/boxmodel_stommel_2019 .

3

2.2 Derivative code generation

The two basic modes of algorithmic differentiation (AD) for generating first derivatives of
the model’s dependent variable (output, cost function, quantity of interest) to the model’s
independent variables (inputs, control variables, initial/surface boundary conditions, inter-
nal model parameters) are

• forward mode AD : the tangent linear model

• reverse mode AD : the adjoint model

We will cover both in the following.

2.2.1 Adjoint (or reverse) mode of AD

We now invoke TAF to generate the adjoint code based on the original model

we chdir to the directory where we will compile the model

cd $HOME/../adjoint_examples/boxmodel_stommel_2019/box_model_030118_scalar_cost/bin/

make dependencies, in particular linking all source code to the compile dir.

make depend

we separate the compile directory from the directory where we generate the adjoint

this is purely for convenience and clarity

so we need to chdir

cd ../adjoint/

let’s clean, i.e. remove earlier generated codes

make clean

NOW ... invoke TAF (via staf)

make adtaf

You now see a number of new files in your directory:

• taf ad out.log:
detailed output by TAF, documenting what it has done

• taf command:
the staf command that was issued, in particular containing the list of arguments
provided to staf

• taf output:
short output; would contain ERROR messages, if there are any

• tamc codead.f:
Contains *both* the adjoint code generated by TAF as well as the original code

4

• tamc code.f:
All forward code assembled into a single file (not required, just for convenience)

Finally, we go ahead and compile the code:

we chdir back to the directory where we will compile the model

cd $HOME/../adjoint_examples/boxmodel_stommel_2019/box_model_030118_scalar_cost/bin/

now we make the executable

make

2.2.2 Tangent linear (or forward) mode of AD

We now invoke TAF to generate the adjoint code based on the original model

2.3 Running the model

We are now ready to run the model. The Makefile was set up such that the executable (file
modelexe) obtained is placed into a dedicated directory
$HOME/../adjoint examples/boxmodel stommel 2019/box model 030118 scalar cost/exe/

Let’s go there and run it:

chdir to model execution directory

cd $HOME/../adjoint_examples/boxmodel_stommel_2019/box_model_030118_scalar_cost/exe/

run the model

./runexe

2.4 interpreting the output

...

3 Some comments on the AD-generated code

3.1 An example code line and its adjoint

In the lecture, we covered the advection equation for T3:

dT3
dt = U(T3 − T2), for U ≥ 0

diffT3 = u ∗ (T3− T2)

5

Its total derivative is:

δdiffT3 =
∂diffT3

∂U
δU +

∂diffT3

∂T2
δT2 +

∂diffT3

∂T3
δT3

In the box model code provided, the corresponding line is in file box timestep.F. (Unfor-
tunately, some variable names have changed, but it should be straightforward to attribute
the code.)

dFldDt(3) = velsign*

& uVelLoc*(fldNow(2) - fldNow(3)) / vol(3)

The corresponding adjoint code is contained in file box adjoint.F, S/R box timestepad:

fldnowad(3) = fldnowad(3)-dflddtad(3)*(velsign*uvelloc/vol(3))

fldnowad(2) = fldnowad(2)+dflddtad(3)*(velsign*uvelloc/vol(3))

uvellocad = uvellocad+dflddtad(3)*(velsign*(fldnow(2)-fldnow(3))

$/vol(3))

dflddtad(3) = 0.d0

Compare this to the matrix expression we derived in the lecture.

3.2 IF-statements

The S/R box timestep.F also contains an example of an IF-statement:

if (uVelLoc .GE. 0.) then

...

else

...

end if

The corresponding adjoint code in S/R box timestepad documents how AD generates
conditional derivative code.

3.3 Reversal of S/R call sequence

The ”top-level routine” of the box model is S/R box model body. The bare-bones calling
sequence within the time stepping loop is:

c-- calculate densities:

call box_density(tNow, sNow, rho)

6

c-- calculate transport:

call box_transport(rho, uVel)

CADJ STORE uvel = comlev1, key = ikey, byte = isbyte

c-- leap frog time stepping:

call box_timestep(

& ’T’, gamma_t, tStar, nullforce,

& uVel, tNow, tOld, tNew)

call box_timestep (

& ’S’, gamma_s, sStar, FW,

& uVel, sNow, sOld, sNew)

c-- Robert filter:

call box_robert_filter(tNow, tOld, tNew)

call box_robert_filter(sNow, sOld, sNew)

c-- cycle fields

call box_cycle_fields

The corresponding call sequence of the adjoint code is in S/R box model bodyad:

call box_cycle_fieldsad

call box_robert_filterad(snowad,soldad,snewad)

call box_robert_filterad(tnowad,toldad,tnewad)

call box_timestepad(gamma_s,uvel,uvelad,snow,snowad,

$soldad,snewad)

call box_timestepad(gamma_t,uvel,uvelad,tnow,tnowad,

$toldad,tnewad)

call box_transportad(rhoad,uvelad)

call box_densityad(tnowad,snowad,rhoad)

3.4 Store directive and multi-level checkpointing

TBD ...

7

	Installing TAF
	Preliminaries
	The script staf
	Getting access

	Application: Stommel's 3-box model
	Obtaining the code
	Derivative code generation
	Adjoint (or reverse) mode of AD
	Tangent linear (or forward) mode of AD

	Running the model
	interpreting the output

	Some comments on the AD-generated code
	An example code line and its adjoint
	IF-statements
	Reversal of S/R call sequence
	Store directive and multi-level checkpointing

