
The ends and means of “data assimilation”

Patrick Heimbach
Oden Institute for Computational Engineering and Sciences
Jackson School of Geosciences
University of Texas at Austin

Estimating the Circulation and Climate of the Ocean
http://ecco-group.org



What is data assimilation?

It’s all about …
– making optimal use of, 
– consistently extracting, 
– or combining

information contained in observations and physical 
laws expressed through a model, and taking into 
account all uncertainties.



Outline … =  Conclusions

• DA seeks to optimally combine information content 
in observations, models, and their uncertainties(!)

• DA can mean different things to different people

• Depending on application, different methods:
– forecasting: filter methods (e.g., Kalman filter)
– reconstruction: smoother / adjoint methods



Combine two incomplete 
information sources

• Combine the heterogeneous streams of measured state 
variables with simulations of these same variables

• The way of how we combine is influenced by / takes into 
account the different sources of uncertainties!

C. Wunsch, in "A Celebration in Geophysics and Oceanography 1982. In Honor of Walter Munk on his 65th birthday."



Formal framework – least-squares objective/cost function

Basic 
ingredients:
• observations (diverse types, sparse, inhomogeneously

distributed in space & time)
• model (various levels of complexity)
• errors/uncertainties (of various kinds)



Formal framework – least-squares objective/cost function
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Least-squares objective/cost function
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E: operator mapping from model space (x) to obs space (y)
R: error covariance matrix (with error variances �2)
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errors

observations model

3 basic ingredients:



The filtering (forecasting) problem
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State estimation via filtering (sequential) methods
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State estimation via filtering (sequential) methods
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• Innovation vector (or residual)
• Analysis increment



State estimation via filtering (sequential) methods
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NOTE:
• The role/importance of error/uncertainty estimates!
• What if we reduce observation errors?

State before change of error bars



State estimation via filtering (sequential) methods
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NOTE:
• The role/importance of error/uncertainty estimates!
• What if we reduce observation errors?



State estimation via filtering (sequential) methods
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State before change of error bars

NOTE:
• It’s easy to over-fit the data if error bars are unrealistically small!
• But is it good?



State estimation via filtering (sequential) methods
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NOTE:
• It’s easy to over-fit the data if error bars are unrealistically small!
• But is it good?



“Analysis” and “re-analysis” in Numerical Weather Prediction

• “Analysis” is done in operational (real-time) mode
– not all observations available in time (< 20%?)
– forecast model changes over time (e.g., resolution, …)

• “Re-analysis” consists of:
– redoing the forecast/analysis steps over extended period
– use the same model
– use all observations (incl. delayed-mode)

• Current global re-analyses:
– ECMWF/ERA-Interim, NASA/MERRA, JRA-25/55, NCEP-

CFSR, CMC-GDPS, NOAA/20CR, …
– e.g.: Lindsay et al.; Chaudhuri et al. (both J. Clim., 2014)

• Regional Arctic high-res. re-analyses:
– Arctic System Reanalysis (ASR), PIOMAS (ocean/ice), …



Filtering / sequential approach

Various implementations & approximations:
• Nudging
• Relaxation
• Successive correction
• Optimal (or statistical) interpolation
• 3D-Var
• …

Lots of computational science & engineering involved to make it work



State estimation via smoother (adjoint) method
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State estimation via smoother (adjoint) methods
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• Entire model trajectory is adjusted simultaneously
• Sensitivity of misfit cost function to previous states is carried 

(and accumulated) backward in time by the adjoint model



State estimation via smoother (adjoint) methods
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State estimation via smoother (adjoint) method
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– gradient-based optimization!
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Compare smoother to filter method
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• Filter can only propagate information content from observations 
forward in time

• Smoother uses past, present, and future observation combined!
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Compare smoother to filter method
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• Smoother state (blue) follows equations of motions exactly
– tendency/trends (dx/dt) physically realistic

• Filter state (green) fits observations better
– validity of tendency/trends unclear
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Parameter estimation via smoother (adjoint) method

b(0)

b(1)

…

b(n)

xa0

• for model                 x(t) = a + b t
– instead of varying initial condition xa(0) = a,
– vary slope (i.e. “model parameter”) b



Parameter estimation via smoother (adjoint) method
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Joint state & parameter estimation via smoother (adjoint) method
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• for model                 x(t) = a + b t, simultaneously vary
– initial condition (i.e. “model state”) xa(0) = a
– and slope (i.e. “model parameter”) b



END



An optimal estimation/control approach 
Iterative optimization via gradient obtained from adjoint model



The smoother (reconstruction) problem

Consider perfect model L (i.e., ⌘ = 0), and obs. y with noise ✏:

x tk+1
= Lx tk

yk+1 = Ex tk+1
+ ✏k+1

Variational form of least-squares estimation problem:

J(x) =
X

0kN

[Exk � yk ]
T R�1 [Exk � yk ]

Extend to Lagrange function L, Lagrange multipliers µk :

L(x , µ) = J(x) +
X

0kN

µT
k [xk+1 � Lxk ]
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The smoother (reconstruction) problem

Lagrange multiplier method:
Stationary point of L leads to set of normal equations:

@L
@µ(t)

= x(t)� L [x(t � 1)] = 0 1  t  tf

@L
@x(t)

=
@J0
@x(t)

� µ(t)

+


@L[x(t)]
@x(t)

�T
µ(t + 1) = 0 0 < t < tf

@L
@x(tf )

=
@J

@x(tf )
� µ(tf ) = 0 t = tf

@L
@x(0)

=
@J

@x(0)
�
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@x(0)

�T
µ(1) t0 = 0
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The smoother (reconstruction) problem

“Variational” hints that we need a gradient:

gradient of J with respect to independent or control variables!

Here: Vary initial conditions, x0 such as to minimize J

BUT: J depends not just on x0, but on all xk , k � 0.

consider nonlinear model xk+1 = L (xk)

linearized version is state transition matrix L

� xk+1 =
@xk+1

@xk
�xk = L �xk

Need chain rule of di↵erentiation:

J = J (x0, x1, x2, . . . , xN)

= J
⇣
x0, L(x0), L(L(x0)), . . . , L

N(x0)
⌘
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The smoother (reconstruction) problem
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LT : is the adjoint model (and L is the tangent linear model)

µk =
⇣

@J
@xk

⌘
: Lagrange multipliers or gradients
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The smoother (reconstruction) problem

For intermediate step of the adjoint model integration one obtains:

µk =
@J

@xk
= LT

@J

@xk+1

+ ET R�1 [Exk � yk ]

= LT
✓
LT

@J

@xk+2

+ ET R�1 [Exk+1 � yk+1 ]

◆

+ ET R�1 [Exk � yk ]

The adjoint model LT propagates µk (the sensitivity of J with
respect to all earlier states xk) backward in time to x0;

Each model–data misfit (i.e. innovation vector Exk � yk) is a
source of sensitivity;

The gradient of J with respect to x0 takes into account (and
weighs) the size of all misfit terms, all (inverse) error
covariances, and all (linearized) model dynamics.
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Conclusions

• DA seeks to optimally combine information content in 
observations, models, and their uncertainties!

• DA can mean very(!) different things to different people

• Depending on application, different methods warranted:
– forecasting: filter methods (e.g., Kalman filter)
– reconstruction: smoother methods (adjoint method)

• formal estimation methods to synthesize the diverse & 
sparse observations seems important for climate 
reconstructions
– it is feasible,
– simply copying NWP approaches not always useful,
– remains a challenge for the time to come


