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Main Points from Lectures 1 & 2

3) Estimates by minimum variance and least-squares estimates are 
identical when assumptions are the same,

4) Kalman filter and RTS Smoother are minimum variance estimators that 
solve the state estimation problem sequentially in time and by 
separate constraint, 

5) Adjoint method is a least-squares estimator that solves the state 
estimation problem iteratively by descent optimization, using the 
model’s adjoint to compute the gradient of the least-squares’ misfit. 

1) State estimation (data assimilation) is 
fundamentally an inverse problem,

2) Inverse problems using data are invariably ill-
posed mathematically for which inverse 
methods provide particular solutions,
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1. Basic Machinery (Monday)
The mathematical problem (inverse problem), Linear 
inverse methods, Singular value decomposition (SVD), 
Rank deficiency, Gauss-Markov theorem, Minimum 
variance estimate, Least-squares, 

2. Methods of state estimation (Tuesday)
Kalman filter, Rauch-Tung-Striebel smoother, 
Adjoint method, 

3. Practical Matters (this lecture)
Error estimation, representation error, covariance, 
approximate Kalman filters, other data assimilation 
methods (Optimal Interpolation, 3DVAR).
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What is “data error”?
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What is “data error”?
“Data error” in state estimation is not 

simply “noise in data” but includes 
model representation error. 

true value of the 
model state

The true value of the model may not necessarily 
correspond to a noise-free observation, because of 
missing physics from the model; e.g., 

1. Subgridscale variability,
2. Baroclinic variability for a barotropic model,
3. Tides in a non-tidally forced model,
4. Atmospheric pressure-driven variability in a 

model without pressure forcing.

( ) ( )δ δ≡ − −ˆ ˆ THx yR Hxy
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How can data error be set?
An estimate of data error can be obtained by 

comparing observations with a model simulation. 
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Example of an error estimate
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Data and model simulation error estimates (variance) of 
sea level, comparing altimetry data (TOPEX/Poseidon) 

and a global MITgcm with 1-deg resolution.  

[Fukumori et al., 1999]
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Significance of State Estimation

State estimation constrains what is consistent 
with both model and observations, not 

entirely what observations measure or the 
combination of the two.
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What is model error?

What we treat as model error 
dictates what is being estimated.

Objective function 
in adjoint method

Kalman filter
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What is being estimated?

( ) ( ) ( )= − + −ˆ ˆ ˆ1 1t t tx Ax GuState estimate

Control (includes 
model forcing & 

errors in the model 
equation)
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Example of model error estimate
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Example of model error estimate
Consistency between formal error estimates 

and model-data differences
( )T T

sim − −HP HPH H

( ) T T−−H H HPHP

[ ] ( )ˆ ˆvar vˆ ˆarsim− − − −  y yHx Hx

( ) [ ]ˆˆ ˆ ˆvar var− − − −  x yH Hy x

comparable
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Significance of State Estimation
A state estimate provides 

a) a more accurate description of what is 
being estimated than a simulation does,

b) a more complete description of what is 
being estimated than observations do. 

( )ˆ sim tx

( )+ˆ ,tx( )ˆ ty

time

state

t−1t

observation
simulation

state estimate
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Significance of Correlation

The weights (prior error covariance) define the estimation 
problem and using different weights amount to solving 
different problems. In particular, ignoring correlation (cross-
covariance) can hamper optimization; 

( ) ( )1 1ˆ ˆT T
nn xxJ − −= − − +x R x x Ry EyE x

e.g., fitting global mean sea level (GMSL) rise.

GM
SL

 (m
)

monthsmonths

d EmP
dt
η
=

( ) ijij
σδ=nnR ( ) 0

ij
≠nnR model

data
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Significance of Correlation

Atmospheric controls are often not only correlated 
spatially but also between different variables.  

τ τx x
τ τx y
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Summary of data and control errors

1. Data error in state estimation is not only inaccuracies in 
the measurements but also includes models’ 
representation error,  

2. Data error and simulation error (consequence of 
process noise) can be estimated from comparing data 
and model simulation,

3. Model’s control error (process noise) must be chosen 
judiciously and examined for consistency. It also 
defines what is being estimated by the model-data 
synthesis,

4. Covariance (correlation) among data error and among 
controls are as fundamental to estimation as the error 
variance themselves. 
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Evaluating Covariances
Evaluating covariance (correlation) can be difficult owing to its 

large dimension, which motivates approximations by taking 
advantage of certain inherent low degrees of freedom (d.o.f.), 

thus reducing computational requirements; e.g., 

• Large-scale variations often dominate covariance (e.g., 
atmospheric synoptic systems),

• Small-scale variations often have limited spatial extent. 

′≈ ru Bu where ( ) ( )dim dimru u

reduced 
state

( )′ ′ ′ ′ ′ ′≈ ≈ ≈TT T T T T
r r r r r ruu B u Bu Bu u B B u u B

Estimate               by evaluating the smaller                 . Tuu T
r ru u
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Quantifying correlation with reduced d.o.f.

Large-scale approximation of atmospheric control 
by objective mapping from a coarse grid.

τ τx x
τ τx y

′≈ ru Bu

( )′ ′ ′ ′ ′ ′≈ ≈ ≈TT T T T T
r r r r r ruu B u Bu Bu u B B u u B

2,000×2,000200,000×200,000

100,000-point 
fine grid

1000-point 
coarse grid



This error covariance’s time-integration step is the most 
computationally demanding step of the Kalman filter algorithm, 
because the dimension of             is the square of            ; e.g., 

• Dimension of            in ECCO version 4 is 10 million (40 MB), 

• Storage of a single             is equivalent to 10 million                       
(400 TB),

• Integration of             requires 20 million times of            ;   
Integrating            for 26-years requires 0.5 days,   
Integrating            for 26-years requires 27,000 years. 
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Forecast

Correction
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Reduced-State Kalman Filter & Smoother
Estimate only dominant and/or particular elements of the error 

covariance matrix, thus reducing both storage and 
computational time of Kalman filtering.
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(column j of       ) =  
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The reduced-state model operators (matrices) can be 
derived explicitly and then used in the Kalman filter 

algorithm to evaluate the state error covariance matrix.     

( ) ( ) ( )
( ) ( )

+ + ′= +− − −

− −= +

, 1 11 1r r

r r r

r r

t t t

t t

x x u

x u

B

G

G

A

B AB B

+≡rA B AB + ′≡rG B GB

( ) ( )+  = + − , ,j jr F Fe B xA Be u x u

( ) ( ) ( ) ( ) ( )( )+ = + =1 ,t t t F t tx Ax Gu x u

( ) ( )( ) ( ) ( )( )+ ≈ +, ,F t t F t tx δ u x u Aδ

( ) ( )( ) ( ) ( )( )+ +  ≈ + − , ,F t t F t tB Aδ B x δ u x u

(column j of       ) =  rA

Similarly
rG

Setting                   where        is the j-th column of identity matrix spanning  je≈ jδ Be

where

Given model

a perturbation satisfies

rx

( ) ( )+  ′ ′ ′= + − , ,j jr F Fe B x u B e x uG

pseudo inverse

Reduced-State Kalman Filter & Smoother



22State Estimation 3 (I.Fukumori)ECCO Summer School 2019

Approximate Kalman filter and RTS smoother 
with reduced-state error covariance matrix.     
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[Fukumori & Malanotte-Rizzoli, 1995]

Reduced-State Kalman Filter & Smoother



e.g., objective mapping 

1) Typically, do matrix-vector operations than matrix-matrix operations,

2) An algorithmic adjoint can be used in place of left multiplying a  
matrix transpose, 

3) Pseudo inverses do not necessarily need to be computed explicitly, 
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Some things to note. 
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4) Multiple reduced-state filters/smothers can be combined 
(Partitioned filter & smoother; Fukumori, 2002) 
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i tt t t t tx x y H xK

1,000×1,000

Reduced-State Kalman Filter & Smoother



1) Singular Evolutive Extended Kalman (SEEK) filter [Pham et al., 1998] 
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Other Approximate Kalman Filters

( ) ( ) ( ) ( )≈ T
r tt t tP PB B ( ) ( )= −1t tB AB

Let the reduced state basis function evolve in time.
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2) Ensemble Kalman filter (EnKF) [Evensen, 1994] 
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Instead of time-integrating the covariance matrix itself, 
integrate a small collection of states (ensemble) and use 
its sample covariance instead. 

≈
1 T

L
P XX ( )≡ − − −1 2 LX x x x x x xwhere

=

≡ ∑11 L

i
iL

x x

( ) ( ) ( )= − + −1 1i i it t tx Ax Gu for each member i

Other Approximate Kalman Filters



3) Steady-state Kalman filter and RTS smoother
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Estimation errors often approach an 
asymptotic limit which could be used 
in place of the time-variable error,  
thus significantly reducing the 
computational requirements of 
Kalman filtering and RTS smoothing.  
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[Fukumori et al., 1993]



1. AD tools can generate code to evaluate Hessian-
vector products, which can be used to compute 
the dominant modes of the error,

2. The tangent linear model can be used to map the 
control error to particular state errors of interest. 
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Adjoint Error Estimate

The Hessian of the least-squares problem’s objective function 
provides the formal error estimates’ inverse for the adjoint 
method,  but the Hessian is much too large to be evaluated 
explicitly, necessitating approximations for error evaluation. 

[Moore et al., 2011; Kalmikov & Heimbach, 2014] 

The adjoint method has an advantage of not requiring explicit 
state error estimates, but the lack thereof is also a shortcoming.



1) Nudging

2) Optimal Interpolation (OI)

3) Three-dimensional Variational method (3DVAR) 
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Other Common Data Assimilation Methods

Simplified methods of data assimilation are still in 
common use today owing to their simplicity 

compared to formal state estimation methods. 

( )ˆ ty

( )−ˆ 1tx

( )−ˆ ,tx

( )ˆ tx

ˆ, ,  A G u [ ]−K y Hx

time

state

The image part with relationship  
ID rId18 was not found in the file. t



1) Nudging
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Other Common Data Assimilation Methods

( ) ( ) ( ) ( )γ  = − + − − ˆˆ ˆ ˆ  ,     ,  i i iix t x xyt t t

where              is data processed to be coincident in 
space and time with the model variable        and         
is a prescribed coefficient (nudging coefficient) 
describing relaxation of model variable       towards 

γ
( )ˆ iy t

( )ˆ iy tix

ix

Nudging differs from Kalman filter in weighting 
coefficient and how data is used. 

( ) ( ) ( ) ( ) ( ) ( )
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−
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 ≡ + − −
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T Tt t t
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2) Optimal Interpolation (OI)
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Other Common Data Assimilation Methods

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
−

 = − + − − 

 ≡ + 
1ˆ ˆ ˆ  ,    , ˆ   T T t

tt t t t

t t tP P
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K

x x H x

H H H

y

R

In OI, covariance matrix       is prescribed whereas in 
Kalman filtering       is computed taking both model 
physics and past observations into account. 

P
P



3) Three-dimensional variational method (3DVAR) 

31State Estimation 3 (I.Fukumori)ECCO Summer School 2019

Other Common Data Assimilation Methods

3DVAR combines coincident data with model in a least-
squares sense, minimizing the misfit above iteratively by 
descent optimization with prescribed weights. 
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Given the equivalence of least-squares and minimum 
variance estimate, 3DVAR is equivalent to OI. 
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Summary of Covariance & Other Data Assimilation  

1. State estimations’ error covariance can be derived by 
approximation in space, time and variables (e.g., state 
reduction, Hessian products), providing fundamental 
measures of the estimate, 

2. Resulting errors also permit application of Kalman filtering 
and smoothing to practical problems,

3. Common methods of data assimilation (e.g., nudging, OI, 
3DVAR) are filtering algorithms with prescribed state errors 
instead of computed ones from first principles.

Common data assimilation 
lack smoothing.
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1) Smoothed estimates distinguish state estimation (and 
ECCO) from common data assimilation, 

2) The unique virtue of smoothed estimates is its 
description of the state’s temporal evolution (blue 
curve), not the discrete estimates (blue circles) per se.

Concluding Remarks

( )−ˆ 1tx

( )−ˆ ,tx
( )+ˆ ,tx

( )− +ˆ 1,tx

( )ˆ tx ( )ˆ ty

time

state

t−1t

filtered estimatesmoothed estimate

The model and its adjoint permit interrogation of this evolution; 
e.g., budgets, adjoint decompositions. 
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Concluding Remarks

3) While the fidelity of state estimation will continue to 
improve (e.g., more data, better models, better estimation), 
the results where it already has skill can be used to learn 
something new about the ocean, and is ripe for innovation 
(e.g., budget analysis, adjoint decomposition). 
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