
Adjoints via Algorithmic Differentiation - an intro

Patrick Heimbach

The University of Texas at Austin

Oden Institute for Computational Engineering and Sciences
Jackson School of Geosciences

Institute for Geophysics

ECCO Summer School 2019
Friday Harbor Laboratories

May 20 to 31, 2019



Why gradients?

I Optimization (inversion, least-squares estimation)

I Comprenensive sensitivity analysis

I Uncertainty characterization and quantification

I Non-normal transient amplification/growth (singular vectors)

Patrick Heimbach Intro to Adjoints and AD



Why gradients? Optimization!

Patrick Heimbach Intro to Adjoints and AD



Why gradients? Optimization!

Patrick Heimbach Intro to Adjoints and AD



Why gradients? Sensitivities!

Patrick Heimbach Intro to Adjoints and AD



Why gradients? Uncertainties!

Patrick Heimbach Intro to Adjoints and AD



Why gradients? Non-normal Transient Amplification!

Patrick Heimbach Intro to Adjoints and AD



Introduction

A simple example

Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

Consider model, L, mapping 2-dim. vector x to y:

Model

y = L(x) =

[
y1
y2

]
=

[
0 a
−b 0

]
·
[
y1
y2

]
=

[
a x2
−b x1

]
(1)

Now, assume observations [d1 d2]T are available for the two
elements [y1 y2]T , and we can write a misfit or cost function:

Least-squares cost/objective function

J0 = J0(y) =
1

σ21
(y1 − d1)2 +

1

σ22
(y2 − d2)2

=
1

σ21
(ax2 − d1)2 +

1

σ22
(−bx1 − d2)2

(2)

with σ1, σ2 prior errors (special case of inverse error covariance).
Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

Can view J0 as a composite mapping

J0 = J0(y) = J0(L(x)),

such that

J0 : x 7−→ y 7−→ J0[y]
x 7−→ L[x] 7−→ J0[L[x]]

IRm 7−→ IRn 7−→ IR
(3)

I Find the gradient of J0 with respect to the input variable x.

I Note that, alternatively, or in addition, we could also be
interested in the gradient of J0 with respect to the model
parameters p = [a b]T – will come back to later.

Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

Of course, the example chosen is very simple, and from eqn. (2)
we can readily write down the gradient:

The gradient (with respect to x)

∇xJ
T
0 =

[
∂J0
∂x1
∂J0
∂x2

]
=

[
−2b
σ2
2

(−bx1 − d2)
2a
σ2
1

(ax2 − d1)

]
(4)

DONE!

Patrick Heimbach Intro to Adjoints and AD



Introduction – some terminology

I dependent versus independent variables:

J0 (or L): dependent variable whose gradient is sought
(cost/objective function; target quantity of interest – QoI)
often scalar-valued!
~u or x(0): independent or control variables
variables with respect to which the dependent variable is
differentiated

I forward / reverse mode:

tangent linear model: forward mode
adjoint model: reverse mode

I active, passive, required variables:

e.g., for J0 = a2x22 + x21 :

active: x1, x2 (variables that are subject to differentiation)
passive: a (variables NOT subject to differentiation)
required: x1, x2 (variables needed to evaluate derivative)

Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

The conventional approach: directional derivative

∂J0
∂xi

=
J0(x + ε ei ) − J0(x)

ε

for small ε, and required for each direction ei

e1 = [1 0]T , e2 = [0 1]T

Serveral shortcomings:

I If the dimension of x was very large (e.g. 107 instead of 2)
and calculation of J0 expensive, performing 107 perturbation
calculations would be prohibitive;

I Accuracy depends on coice of ε and finite-differencing scheme
used (here we used the simplest possible)

Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

Consider how perturbations δx in x are mapped to perturbations
δy in y = Lx. We define the linearized model dL via

δy = dL δx

[
δx1
δx2

]
7−→

[
δy1
δy2

]
=

[
∂y1
∂x1
δx1 + ∂y1

∂x2
δx2

∂y2
∂x1
δx1 + ∂y2

∂x2
δx2

]

=

[
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

]
·
[
δx1
δx2

]
=

[
0 a
−b 0

]
·
[
δx1
δx2

]
=

[
a δx1
−b δx2

]
(5)

N.B.: Since L is linear, the Jacobian dL is identical to L (a choice
to simplify our calculation for now).

Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

Now, consider the total variation of J0 with respect to y:

δJ0 =
∂J0
∂y1

δy1 +
∂J0
∂y2

δy2 =
〈∂J0
∂y

T

, δy
〉

(6)

with general inner product < . , . >.

We can obtain gradient using formal definition
< AT x , y >=< x ,Ay > of the adjoint:

δJ0 =
〈∂J0
∂y

T

, δy
〉

=
〈∂J0
∂y

T

, dL δx
〉

=
〈
dLT

∂J0
∂y

T

, δx
〉

=
〈∂J0
∂x

T

, δx
〉 (7)

Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

We obtain general expressions for the tangent linear model and its
dual, the adjoint model:

dJ0 : δx −→ δy = dL · δx −→ δJ0 = ∇yJ0 · δy

d∗J0 : δ∗x = dLT · δ∗y ←− δ∗y = ∇yJ
T
0 ←− δ∗J0 = 1

(8)

with

δ∗x = ∇xJ
T
0 =

∂y

∂x

T

· ∂J0
∂y

T

· δJT0 (9)

Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

For our example, we obtain:

δJ0 =
2

σ21
(y1 − d1) δy1 +

2

σ22
(y2 − d2) δy2

=

[
2

σ21
(y1 − d1)

2

σ22
(y2 − d2)

]
·
[
δy1
δy2

]
=

[
2

σ21
(ax2 − d1)

2

σ22
(−bx1 − d2)

]
·
[

0 a
−b 0

]
·
[
δx1
δx2

]
=

[
−2b

σ22
(−bx1 − d2)

2a

σ21
(ax2 − d1)

]
·
[
δx1
δx2

]
(10)

Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

δ∗x =

[
δ∗x1
δ∗x2

]
=

[
−2b
σ2
2
(−bx1 − d2)

2a
σ2
1
(ax2 − d1)

]

=

[
0 −b
a 0

]
·

[
2
σ2
1
(ax2 − d1)

2
σ2
2
(−bx1 − d2)

]
· δ∗J0

= dLT · δ∗y · δ∗J0

(11)

with δ∗J0 = 1

Patrick Heimbach Intro to Adjoints and AD



Introduction: change of control space – same model,
different adjoint!

“THE” adjoint model?

Patrick Heimbach Intro to Adjoints and AD



Introduction: change of control space – same model,
different adjoint!

Consider sensitivity of J0, not with respect to state x,
but with respect to model parameters p = [a b]T .

Direct differentiation yields:

∇pJ
T
0 =

[
∂J0
∂a
∂J0
∂b

]
=

[
2
σ2
1

(ax2 − d1) x2

− 2
σ2
2

(−bx1 − d2) x1

]

and:

δJ0 =
∂J0
∂a

δa +
∂J0
∂b

δb

=
[

2
σ2
1

(ax2 − d1) − 2
σ2
2

(−bx1 − d2)
]
·
[
x2 0
0 −x1

]
·
[
δa
δb

]

Patrick Heimbach Intro to Adjoints and AD



Introduction: change of control space – same model,
different adjoint!

We can readily deduce:

δ∗p =

[
δ∗a
δ∗b

]
=

[
2
σ2
1
(ax2 − d1)x2

− 2
σ2
2
(−bx1 − d1)x1

]

=

[
x2 0
0 −x1

]
·

[
2
σ2
1
(ax2 − d1)

2
σ2
2
(−bx1 − d2)

]
· δ∗J0

= dL̃T · δ∗y · δ∗J0

(12)

with corresponding mapping relationship:

dJ0 : δp −→ δy(p) = dL̃ · δp −→ δJ0 = ∇yJ0 · δy

d∗J0 : δ∗p = dL̃T · δ∗y ←− δ∗y = ∇yJ
T
0 ←− δ∗J0 = 1

(13)

Patrick Heimbach Intro to Adjoints and AD



Introduction: preliminary lessons

I There isn’t such a thing as “the adjoint model”!
Its form depends crucially on the control problem formulated.

I A strengths of algorithmic differentiation is the fact that it
can deal much more flexibly with changes to the formulation.

I It isn’t even clear what is meant by “the adjoint model”:

mathematicians refer to the entire expression dLT · δ∗y · δ∗J0
as the adjoint of the mapping J0(L(x)),
physicists think of L as “the model”, dL as “the Jacobian”,

and dLT only as “the adjoint“;

I The expressions for δ∗y = ∇yJ
T
0 remain the same, and it is

really dL vs. dL̃ (and their transpose) which change the
overall TLM and ADM.

Patrick Heimbach Intro to Adjoints and AD



Introduction: can also compute the “joint gradient”

Homework

Patrick Heimbach Intro to Adjoints and AD



The time-varying problem

The time-varying problem

Patrick Heimbach Intro to Adjoints and AD



The time-varying problem

Consider time-evolving model:

x(t) − L [x(t − 1)] = 0 (14)

Define objective function:
time-mean volume over last n + 1 timesteps tf − n, . . . , tf − 1, tf :

J0[x] =
1

n + 1

(
V [x(tf − n)] + . . .+ V [x(tf )]

)
(15)

Define Lagrangian:

J = J0[x] −
tf∑
1

µT (t)
{
x(t) − L [x(t − 1)]

}
(16)

Patrick Heimbach Intro to Adjoints and AD



The time-varying problem: set of normal equations

∂J

∂µ(t)
= x(t)− L [x(t − 1)] = 0 1 ≤ t ≤ tf (17a)

∂J

∂x(t)
=

∂J0
∂x(t)

− µ(t)

+

[
∂L[x(t)]

∂x(t)

]T
µ(t + 1) = 0 0 < t < tf (17b)

∂J

∂x(tf )
=

∂J0
∂x(tf )

− µ(tf ) = 0 t = tf (17c)

∂J

∂x(0)
=

∂J0
∂x(0)

−
[
∂L[x(0)]

∂x(0)

]T
µ(1) t0 = 0 (17d)

Patrick Heimbach Intro to Adjoints and AD



The time-varying problem: adjoint time-stepping

Successive evaluation backward in time, starting at t = tf :

µ(tf ) =
∂J0
∂x(tf )

=
1

n + 1

∂V [x(tf )]

∂x(tf )

n + 1 time steps earlier, at t = tf − n, and using the results of
µ(tf ), . . . , µ(tf − n + 1), we obtain:

µ(tf − n) =
1

n + 1

{
∂V [x(tf − n)]

∂x(tf − n)

+

[
∂L[x(tf − n)]

∂x(tf − n)

]T
· ∂V [x(tf − n + 1)]

∂x(tf − n + 1)

+ . . .

+

[
∂L[x(tf − n)]

∂x(tf − n)

]T
· . . . ·

[
∂L[x(tf − 1)]

∂x(tf − 1)

]T
· ∂V [x(tf )]

∂x(tf )

}
(18)

Patrick Heimbach Intro to Adjoints and AD



The time-varying problem: interpretation

I Lagrange multiplier µ(t) provides complete sensitivity of J0 at
time t by accumulating all partial derivatives of J0 with
respect to x from each time step tf , tf − 1, . . . , t

I Those partials taken at later times t + 1, . . . , tf , are
propagated to time t via the adjoint model (ADM), which is

the transpose
[
∂L[x(t)]
x(t)

]T
of the model Jacobian or tangent

linear model (TLM), ∂x(t+1)
x(t) = ∂L[x(t)]

x(t)

I contributions from different times linearly superimposed

I Simplifying the example objective function: instead of the
time-mean, only the volume at the last time step tf is chosen:
now all terms except the one containing ∂V [x(tf )]

∂x(tf )
vanish

Patrick Heimbach Intro to Adjoints and AD



The time-varying problem: the chain rule

J0 : x(0) 7−→ y = x(tf ) 7−→ J0[y]
x(0) 7−→ L[x(tf − 1)] 7−→ V [L[x(tf − 1)]]

is composite mapping for special case, J0 = V [x(tf )] = V [y]

J0 = V [x(tf )]

= V [L[L[. . . L[x(0)]]]]

and corresponding perturbation:

δJ0 =
∂V

∂x(tf )
δx(tf )

=
∂V

∂x(tf )
· ∂x(tf )

∂x(tf − 1)
· . . . · ∂x(1)

∂x(0)
· δx(0)

Patrick Heimbach Intro to Adjoints and AD



The time-varying problem: the chain rule

δJ0 =
〈∂V
∂y

∣∣∣ δy〉
=
〈 ∂V

∂x(tf )

∣∣∣ ∂x(tf )

∂x(tf − 1)
· . . . · ∂x(1)

∂x(0)
· δx(0)

〉
=
〈[∂x(1)

∂x(0)

]T
· . . . ·

[
∂x(tf )

∂x(tf − 1)

]T
· ∂V

∂x(tf )

∣∣∣ δx(0)
〉

=
〈 ∂V

∂x(0)

∣∣∣ δx(0)
〉

δJ0 =
〈 ∂V

∂x(tf )

∣∣∣ T LM · δx(0)
〉

=
〈
ADM · ∂V

∂x(tf )

∣∣∣ δx(0)
〉

Compare ADM with expression for Lagrange multipliers.
Patrick Heimbach Intro to Adjoints and AD



3-box model of the THC

3-box model of the THC

Inspired by work with Laure Zanna & Eli Tziperman (2010)

Patrick Heimbach Intro to Adjoints and AD



3-box model of the THC: overview

DO t = 1, nTimeSteps

calc. density

ρ = −αT + βS

calc. thermohaline transport

U = U(ρ(T ,S))

calc. tracer advection

d

dt
Tr = f (Tr ,U)

calc. timestepping, update
tracer fields Tr = {T ,S}

END DO

Patrick Heimbach Intro to Adjoints and AD



3-box model of the THC: overview

ρi = −αTi + βSi

U = u0
{
ρ2 − [Hρ1 + (1− H)ρ3 ]

}
dT3

dt
= U(T2 − T3)/V3

dS3
dt

= U(S2 − S3)/V3

Patrick Heimbach Intro to Adjoints and AD



3-box model: consider advection equation for T3

dT3
dt = U(T3 − T2), for U ≥ 0

diffT3 = u ∗ (T3− T2)

I total derivative:

δdiffT3 =
∂diffT3

∂U
δU +

∂diffT3

∂T2
δT2 +

∂diffT3

∂T3
δT3

I in matrix form:
δdiffT3
δT3
δT2
δU


λ

=


0 −U U T3− T1

0 1 0 0

0 0 1 0

0 0 0 1

 ·


δdiffT3
δT3
δT2
δU


λ−1

Patrick Heimbach Intro to Adjoints and AD



3-box model: consider advection equation for T3

I Transposed relationship yields:
δ∗diffT3
δ∗T3
δ∗T2
δ∗U


λ−1

=


0 0 0 0

−U 1 0 0

U 0 1 0

T3− T1 0 0 1

 ·


δ∗diffT3
δ∗T3
δ∗T2
δ∗U


λ

I and thus adjoint code:

adT3 = adT3 - u*addiffT3

adT2 = adT2 + u*addiffT3

adU = adu + (T3-T2)*addiffT3

addiffT3 = 0

Note: state T2, T3, U are required to evaluate derivative
at each time step, in reverse order!
−→ TANGENT linearity

Patrick Heimbach Intro to Adjoints and AD



Reverse order integration (i)

DO istep = 1, nTimeSteps

call density(ρ)

call transport(U)

call timestep(T ,S)

call update(T , S)

END DO

DO istep = nTimeSteps, 1, -1

C recompute required variables

DO iaux = 1, istep

call density(ρ)
call transport(U)
call timestep(T ,S)
call update(T ,S)

END DO

C perform adjoint timestep

call adupdate(T , S)

call adtimestep(T ,S)

call adtransport(U)

call addensity(ρ)

END DO

Patrick Heimbach Intro to Adjoints and AD



Reverse order integration (ii)

DO iOuter = 1, nOuter

CADJ STORE T , S → disk

DO iInner = 1, nInner

call density(ρ)
call transport(U)

call timestep(Tr)
call update(Tr)

END DO

END DO

DO iOuter = nOuter, 1, -1

CADJ RESTORE T , S ← disk

DO iInner = 1, nInner

call density(ρ)
call transport(U)
CADJ STORE T , S , U
call timestep(Tr)
call update(Tr)

END DO

DO iInner = nInner, 1, -1

call adupdate(adTr)
call adtimestep(adTr)
CADJ RESTORE T , S , U
call adtransport(adU)
call addensity(adρ)

END DO

END DO

Patrick Heimbach Intro to Adjoints and AD



Reverse order integration (iii)

I Adjoint evaluated in reverse

→ model state at every time step
required in reverse

→ all state stored or recomputed

I Solution: Checkpointing

e.g. Griewank (1992),
Retrepo et al. (1998)

storing vs. recomputation

Patrick Heimbach Intro to Adjoints and AD



Reverse order integration (iv)

I e.g. 3-level checkpointing:

nTimeSteps = n1 · n2 · n3

→ Storing: reduced from n1 · n2 · n3 to

• disk: n2 + n3,
• memory: n1

→ CPU: 3 · forward + 1 · adjoint ≈ 5.5 · forward

I Closely related to adjoint dump & restart problem.
Available queue sizes at HPC Centres may be limited

I Insertion of store directive requires detailed knowledge
of code and AD tool behaviour
−→ not easy (“semi-automatic” differentiation only)

Patrick Heimbach Intro to Adjoints and AD



Ensure correctness of TLM or ADM derived gradient

Procedures to check that AD-derived gradient G ad
i is correct:

consider perturbation of i-th control vector element ui and ∆~ui = δij

finite difference vs. adjoint tangent linear vs. adjoint

G fd
i = J (ui+ε)−J (ui−ε)

2ε G tl
i = ~∇uJ ·∆~ui =

(
~∇uJ

)
i

R fd
i = 1 − G fd

i

G ad
i

Rtl
i = 1 − G tl

i

G ad
i

→ can test ’correctness’ of ADM and TLM gradients G ad
i G ad

i

→ can test ’time horizon’ of linearity assumption

Other approaches: e.g., Taylor remainder test (Patrick Farrell)

Patrick Heimbach Intro to Adjoints and AD



Input/Output — active file handling

I/O of active variables should be accounted for in derivative

READ assigning a value to a variable

WRITE referencing a variable

code hypothetical code adjoint hypothetical code adjoint code

OPEN(8) ADXD = 0. OPEN(9)

...
...

...
...

WRITE(8) X XD = X ADXD = ADXD + ADZ WRITE(9) ADZ

ADZ = 0. ADZ = 0.

...
...

...
...

READ(8) Z Z = XD ADX = ADX + ADXD READ(9) ADXD

ADXD = 0. ADX = ADX + ADXD

ADXD = 0.

...
...

...
...

CLOSE(8) CLOSE(9)

from Giering & Kaminski (1998)

Patrick Heimbach Intro to Adjoints and AD



Scalability

• domain decomposition (tiles) & overlaps (halos)
• split into extensive on-processor and global phase

Global communication/arithmetic op.’s supported by MITgcm’s
intermediate layer (WRAPPER) which need hand-written adjoint forms

operation/primitive forward reverse
• communication (MPI,...): send ←→ receive
• arithmetic (global sum,...): gather ←→ scatter
• active parallel I/O: read ←→ write

Patrick Heimbach Intro to Adjoints and AD



Why Algorithmic/Automatic Differentiation (AD)?

Patrick Heimbach Intro to Adjoints and AD


