Adjoints via Algorithmic Differentiation - an intro

Patrick Heimbach

The University of Texas at Austin
Oden Institute for Computational Engineering and Sciences
Jackson School of Geosciences
Institute for Geophysics

ECCO Summer School 2019
Friday Harbor Laboratories
May 20 to 31, 2019

Why gradients?

- Optimization (inversion, least-squares estimation)
- Comprenensive sensitivity analysis
- Uncertainty characterization and quantification
- Non-normal transient amplification/growth (singular vectors)

Why gradients? Optimization!

- Given:
- a set of (possibly different types of) observations
- a numerical model \& set of initial/boundary conditions, parameters
- Question: (estimation / optimal control problem)

Find "optimal" model trajectory consistent with available observations

- Approach: seek minimum of least square cost function

$$
\min _{\vec{u}}\{\mathcal{J}(\vec{u})\}=\min _{\vec{u}}\left\{\sum_{i}\left[\operatorname{model}_{i}(\vec{u})-\operatorname{data}_{i}\right]^{2}\right\}
$$

\longrightarrow seek $\vec{\nabla}_{u} \mathcal{J}(\vec{u})$ to infer update $\Delta \vec{u}$ from variation $\mathrm{J}_{\mathrm{J}(\mathbf{)})} \uparrow$

$$
\vec{u}^{n+1}=\vec{u}^{n}+\Delta \vec{u}
$$

- Results: see ECCO
- optimal/consistent ocean state estimate
- adjusted initial/boundary value estimates

Why gradients? Optimization!

Patrick Remmbach

Why gradients? Sensitivities!

- Finite difference approach:
- Take "guessed" anomaly (e.g. SST) and determine its impact on model output (ice export)
- Perturb each input element (SST (i, j)) to determine its impact on output (ice export).

Impact of one input on all outputs

- Reverse/adjoint approach:
- Calculates "full" sensitivity field

$$
\frac{\partial \text { ice export }}{\partial \mathbf{S S T}(x, y, t)}
$$

- Approach: Let

$$
\mathcal{J}=\text { export, } \vec{u}=\mathbf{S S T}(i, j)
$$

$$
\longrightarrow \vec{\nabla}_{u} \mathcal{J}(\vec{u})=\frac{\partial \text { ice export }}{\partial \mathbf{S S T}(x, y, t)}
$$

Sensitivity of one output to all inputs

adjoint approach

Why gradients? Uncertainties!

- Consider linear approx. of cost function

$$
\begin{aligned}
\mathcal{J}(\vec{u}) & =\frac{1}{2}(\mathcal{M}(\vec{u})-\vec{d})^{T} W(\mathcal{M}(\vec{u})-\vec{d})^{T} \\
& \approx \frac{1}{2}\left(\vec{u}-\vec{u}_{0}\right)^{T}\left(\frac{\partial \mathcal{M}}{\partial u}\right)^{T} W\left(\frac{\partial \mathcal{M}}{\partial u}\right)(\vec{u}-i
\end{aligned}
$$

- Compare to multivariate Gaussian distribution

$$
\mathcal{N}\left(\vec{u}_{0}, \Sigma\right) \propto \exp \left[\left(\vec{u}-\vec{u}_{0}\right)^{T} \Sigma^{-1}\left(\vec{u}-\vec{u}_{0}\right)\right]
$$

- posterior error covariance matrix Σ is inverse of Hessian H of $\mathcal{J}(\vec{u})$ at minimum:

$$
\begin{aligned}
H & =d_{u}^{2} \mathcal{J}\left(\vec{u}_{\text {opt }}\right) \\
& =\left(\frac{\partial \mathcal{M}}{\partial u}\right)^{T} W\left(\frac{\partial \mathcal{M}}{\partial u}\right)+\left(\frac{\partial^{2} \mathcal{M}_{k}}{\partial u_{i} \partial u_{j}}\right) W(\mathcal{M}(\vec{u})-\vec{d})
\end{aligned}
$$

- Eigenvalues of H : principal curvatures

$$
\frac{\text { largest EV }}{\text { smallest EV }}=\text { conditioning number }
$$

- r_{i} : principal curvatures
- $\operatorname{det}\left(H^{-1}\right)$: Gauss curvature
- trace (H^{-1}): mean curvature

Why gradients? Non-normal Transient Amplification!

- Consider stable linear system

$$
\frac{\mathrm{d} \vec{v}(t)}{\mathrm{d} t}=M \vec{v}(t), \quad \vec{v}(t) \rightarrow 0 \text { for } t \rightarrow \infty
$$

- If M is non-normal, $M \cdot M^{T} \neq M^{T} \cdot M$, non-orthogonal eigenvectors:

$$
\vec{v}(t)=a_{1} \overrightarrow{u_{1}} e^{\lambda_{1} t}+a_{2} \overrightarrow{u_{2}} e^{\lambda_{2} t}
$$

- If decay timescales very different, i.e. $\lambda_{1} \ll \lambda_{2}<0$, then
- $a_{1} \overrightarrow{u_{1}} e^{\lambda_{1} t}$ decays quickly,removing partial cancelation of EV's
- causing transient amplification for $t \approx 1$
- leaving mostly $\vec{v}(t) \approx a_{2} \overrightarrow{u_{2}} e^{\lambda_{2} t} \rightarrow 0$ for $t \rightarrow \infty$.

Introduction

A simple example

Introduction - a simple example

Consider model, L, mapping 2-dim. vector \mathbf{x} to \mathbf{y} :

Model

$$
\mathbf{y}=L(\mathbf{x})=\left[\begin{array}{l}
y_{1} \tag{1}\\
y_{2}
\end{array}\right]=\left[\begin{array}{rr}
0 & a \\
-b & 0
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{r}
a x_{2} \\
-b x_{1}
\end{array}\right]
$$

Now, assume observations $\left[\begin{array}{ll}d_{1} & d_{2}\end{array}\right]^{T}$ are available for the two elements $\left[\begin{array}{ll}y_{1} & y_{2}\end{array}\right]^{T}$, and we can write a misfit or cost function:

Least-squares cost/objective function

$$
\begin{align*}
J_{0}=J_{0}(\mathbf{y}) & =\frac{1}{\sigma_{1}^{2}}\left(y_{1}-d_{1}\right)^{2}+\frac{1}{\sigma_{2}^{2}}\left(y_{2}-d_{2}\right)^{2} \\
& =\frac{1}{\sigma_{1}^{2}}\left(a x_{2}-d_{1}\right)^{2}+\frac{1}{\sigma_{2}^{2}}\left(-b x_{1}-d_{2}\right)^{2} \tag{2}
\end{align*}
$$

with σ_{1}, σ_{2} prior errors (special case of inverse error covariance).

Introduction - a simple example

Can view J_{0} as a composite mapping

$$
J_{0}=J_{0}(\mathbf{y})=J_{0}(L(\mathbf{x})),
$$

such that

$$
\begin{array}{rccc|cc}
J_{0}: ~ & \mathbf{x} & \longmapsto & \mathbf{y} & \longmapsto & J_{0}[\mathbf{y}] \\
\mathbf{x} & \longmapsto & \longmapsto[\mathbf{x}] & \longmapsto & J_{0}[L[\mathbf{x}]] \tag{3}\\
I R^{m} & \longmapsto & R^{n} & \longmapsto & I R
\end{array}
$$

- Find the gradient of J_{0} with respect to the input variable \mathbf{x}.
- Note that, alternatively, or in addition, we could also be interested in the gradient of J_{0} with respect to the model parameters $\mathbf{p}=\left[\begin{array}{ll}a & b\end{array}\right]^{T}$ - will come back to later.

Introduction - a simple example

Of course, the example chosen is very simple, and from eqn. we can readily write down the gradient:

The gradient (with respect to \mathbf{x})

$$
\nabla_{x} J_{0}^{T}=\left[\begin{array}{l}
\frac{\partial J_{0}}{\partial x_{1}} \tag{4}\\
\frac{\partial J_{0}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{r}
-\frac{2 b}{\sigma_{2}^{2}}\left(-b x_{1}-d_{2}\right) \\
\frac{2 a}{\sigma_{1}^{2}}\left(a x_{2}-d_{1}\right)
\end{array}\right]
$$

DONE!

Introduction - some terminology

- dependent versus independent variables:
- J_{0} (or L): dependent variable whose gradient is sought (cost/objective function; target quantity of interest - Qol) often scalar-valued!
- \vec{u} or $\mathbf{x}(0)$: independent or control variables variables with respect to which the dependent variable is differentiated
- forward / reverse mode:
- tangent linear model: forward mode
- adjoint model: reverse mode
- active, passive, required variables:
e.g., for $J_{0}=a^{2} x_{2}^{2}+x_{1}^{2}$:
- active: x_{1}, x_{2} (variables that are subject to differentiation)
- passive: a (variables NOT subject to differentiation)
- required: x_{1}, x_{2} (variables needed to evaluate derivative)

Introduction - a simple example

The conventional approach: directional derivative

$$
\frac{\partial J_{0}}{\partial x_{i}}=\frac{J_{0}\left(\mathbf{x}+\epsilon \mathbf{e}_{i}\right)-J_{0}(\mathbf{x})}{\epsilon}
$$

for small ϵ, and required for each direction \mathbf{e}_{i}

$$
\mathbf{e}_{1}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]^{T}, \quad \mathbf{e}_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]^{T}
$$

Serveral shortcomings:

- If the dimension of \mathbf{x} was very large (e.g. 10^{7} instead of 2) and calculation of J_{0} expensive, performing 10^{7} perturbation calculations would be prohibitive;
- Accuracy depends on coice of ϵ and finite-differencing scheme used (here we used the simplest possible)

Introduction - a simple example

Consider how perturbations $\delta \mathbf{x}$ in \mathbf{x} are mapped to perturbations $\delta \mathbf{y}$ in $\mathbf{y}=L \mathbf{x}$. We define the linearized model $d L$ via

$$
\delta \mathbf{y}=d L \delta \mathbf{x}
$$

$$
\begin{align*}
{\left[\begin{array}{l}
\delta x_{1} \\
\delta x_{2}
\end{array}\right] \longmapsto\left[\begin{array}{l}
\delta y_{1} \\
\delta y_{2}
\end{array}\right] } & =\left[\begin{array}{l}
\frac{\partial y_{1}}{\partial x_{1}} \delta x_{1}+\frac{\partial y_{1}}{\partial x_{2}} \delta x_{2} \\
\frac{\partial y_{2}}{\partial x_{1}} \delta x_{1}+\frac{\partial y_{2}}{\partial x_{2}} \delta x_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right] \cdot\left[\begin{array}{l}
\delta x_{1} \\
\delta x_{2}
\end{array}\right] \\
& =\left[\begin{array}{rr}
0 & a \\
-b & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\delta x_{1} \\
\delta x_{2}
\end{array}\right]=\left[\begin{array}{c}
a \delta x_{1} \\
-b \delta x_{2}
\end{array}\right] \tag{5}
\end{align*}
$$

N.B.: Since L is linear, the Jacobian $d L$ is identical to L (a choice to simplify our calculation for now).

Introduction - a simple example

Now, consider the total variation of J_{0} with respect to \mathbf{y} :
with general inner product $<.$, .
We can obtain gradient using formal definition $<A^{T} x, y>=<x, A y>$ of the adjoint:

$$
\begin{align*}
\delta J_{0} & =\left\langle{\frac{\partial J_{0}}{\partial \mathbf{y}}}^{T}, \delta \mathbf{y}\right\rangle \\
& =\left\langle{\frac{\partial J_{0}}{\partial \mathbf{y}}}^{T}, d L \delta \mathbf{x}\right\rangle=\left\langle d L^{T}{\frac{\partial J_{0}}{\partial \mathbf{y}}}^{T}, \delta \mathbf{x}\right\rangle=\left\langle{\frac{\partial J_{0}}{\partial \mathbf{x}}}^{T}, \delta \mathbf{x}\right\rangle \tag{7}
\end{align*}
$$

Introduction - a simple example

We obtain general expressions for the tangent linear model and its dual, the adjoint model:

$$
\begin{array}{ccccc}
d J_{0}: & \delta \mathbf{x} & \longrightarrow \delta \mathbf{y}=d L \cdot \delta \mathbf{x} & \longrightarrow & \delta J_{0}=\nabla_{y} J_{0} \cdot \delta \mathbf{y} \\
d^{*} J_{0}: & \delta^{*} \mathbf{x}=d L^{T} \cdot \delta^{*} \mathbf{y} & \longleftarrow & \delta^{*} \mathbf{y}=\nabla_{y} J_{0}^{T} & \longleftarrow \tag{8}
\end{array} \delta^{*} J_{0}=1
$$

with

$$
\begin{equation*}
\delta^{*} \mathbf{x}=\nabla_{x} J_{0}^{T}={\frac{\partial \mathbf{y}^{T}}{\partial \mathbf{x}}}^{T} \cdot \frac{\partial J_{0}{ }^{T}}{\partial \mathbf{y}} \cdot \delta J_{0}^{T} \tag{9}
\end{equation*}
$$

Introduction - a simple example

For our example, we obtain:

$$
\left.\begin{array}{rl}
\delta J_{0} & =\frac{2}{\sigma_{1}^{2}}\left(y_{1}-d_{1}\right) \delta y_{1}+\frac{2}{\sigma_{2}^{2}}\left(y_{2}-d_{2}\right) \delta y_{2} \\
& =\left[\begin{array}{ll}
\frac{2}{\sigma_{1}^{2}}\left(y_{1}-d_{1}\right) & \frac{2}{\sigma_{2}^{2}}\left(y_{2}-d_{2}\right)
\end{array}\right] \cdot\left[\begin{array}{l}
\delta y_{1} \\
\delta y_{2}
\end{array}\right] \\
& =\left[\frac{2}{\sigma_{1}^{2}}\left(a x_{2}-d_{1}\right)\right. \\
\frac{2}{\sigma_{2}^{2}}\left(-b x_{1}-d_{2}\right)
\end{array}\right] \cdot\left[\begin{array}{cc}
0 & a \tag{10}\\
-b & 0
\end{array}\right] \cdot\left[\begin{array}{l}
\delta x_{1} \\
\delta x_{2}
\end{array}\right] .\left[\begin{array}{ll}
\delta x_{1} \\
\delta x_{2}
\end{array}\right] .
$$

Introduction - a simple example

$$
\begin{align*}
\delta^{*} \mathbf{x}=\left[\begin{array}{l}
\delta^{*} x_{1} \\
\delta^{*} x_{2}
\end{array}\right] & =\left[\begin{array}{c}
-\frac{2 b}{\sigma^{2}}\left(-b x_{1}-d_{2}\right) \\
\frac{2}{\sigma_{1}} \\
\sigma_{1}^{2} \\
\hline
\end{array}\right] \\
& =\left[\begin{array}{rr}
0 & -b \\
a & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{2}{\sigma_{1}^{2}}\left(a x_{2}-d_{1}\right) \\
\frac{2_{1}}{\sigma_{2}^{2}}\left(-b x_{1}-d_{2}\right)
\end{array}\right] \cdot \delta^{*} J_{0} \tag{11}\\
& =d L^{T} \cdot \delta^{*} \mathbf{y} \cdot \delta^{*} J_{0}
\end{align*}
$$

with $\delta^{*} J_{0}=1$

Introduction: change of control space - same model, different adjoint!

"THE" adjoint model?

Introduction: change of control space - same model, different adjoint!

Consider sensitivity of J_{0}, not with respect to state \mathbf{x}, but with respect to model parameters $\mathbf{p}=\left[\begin{array}{ll}a & b\end{array}\right]^{T}$.

Direct differentiation yields:

$$
\nabla_{p} J_{0}^{T}=\left[\begin{array}{c}
\frac{\partial J_{0}}{\partial \partial_{0}} \\
\frac{\partial J_{0}}{\partial b}
\end{array}\right]=\left[\begin{array}{r}
\frac{2}{\sigma_{1}^{2}}\left(a x_{2}-d_{1}\right) x_{2} \\
-\frac{2}{\sigma_{2}^{2}}\left(-b x_{1}-d_{2}\right) x_{1}
\end{array}\right]
$$

and:

$$
\begin{aligned}
\delta J_{0} & =\frac{\partial J_{0}}{\partial a} \delta a+\frac{\partial J_{0}}{\partial b} \delta b \\
& =\left[\begin{array}{ll}
\frac{2}{\sigma_{1}^{2}}\left(a x_{2}-d_{1}\right) & -\frac{2}{\sigma_{2}^{2}}\left(-b x_{1}-d_{2}\right)
\end{array}\right] \cdot\left[\begin{array}{cc}
x_{2} & 0 \\
0 & -x_{1}
\end{array}\right] \cdot\left[\begin{array}{l}
\delta a \\
\delta b
\end{array}\right]
\end{aligned}
$$

Introduction: change of control space - same model, different adjoint!

We can readily deduce:

$$
\begin{align*}
\delta^{*} \mathbf{p}=\left[\begin{array}{c}
\delta^{*} a \\
\delta^{*} b
\end{array}\right] & =\left[\begin{array}{r}
\frac{2}{\sigma_{1}^{2}}\left(a x_{2}-d_{1}\right) x_{2} \\
-\frac{2}{\sigma_{2}^{2}}\left(-b x_{1}-d_{1}\right) x_{1}
\end{array}\right] \\
& =\left[\begin{array}{rr}
x_{2} & 0 \\
0 & -x_{1}
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{2}{\sigma_{1}^{2}}\left(a x_{2}-d_{1}\right) \\
\frac{2}{\sigma_{2}^{2}}\left(-b x_{1}-d_{2}\right)
\end{array}\right] \cdot \delta^{*} J_{0} \tag{12}\\
& =d \tilde{L}^{T} \cdot \delta^{*} \mathbf{y} \cdot \delta^{*} J_{0}
\end{align*}
$$

with corresponding mapping relationship:

$$
\begin{array}{ccccc}
d J_{0}: & \delta \mathbf{p} & \longrightarrow & \delta \mathbf{y}(\mathbf{p})=d \tilde{L} \cdot \delta \mathbf{p} & \longrightarrow \\
\delta J_{0}=\nabla_{y} J_{0} \cdot \delta \mathbf{y} \\
d^{*} J_{0}: & \delta^{*} \mathbf{p}=d \tilde{L}^{T} \cdot \delta^{*} \mathbf{y} & \longleftarrow & \delta^{*} \mathbf{y}=\nabla_{y} J_{0}^{T} \quad \longleftarrow & \delta^{*} J_{0}=1
\end{array}
$$

Introduction: preliminary lessons

- There isn't such a thing as "the adjoint model"! Its form depends crucially on the control problem formulated.
- A strengths of algorithmic differentiation is the fact that it can deal much more flexibly with changes to the formulation.
- It isn't even clear what is meant by "the adjoint model":
- mathematicians refer to the entire expression $d L^{T} \cdot \delta^{*} \mathbf{y} \cdot \delta^{*} J_{0}$ as the adjoint of the mapping $J_{0}(L(\mathbf{x}))$,
- physicists think of L as "the model", $d L$ as "the Jacobian", and $d L^{T}$ only as "the adjoint";
- The expressions for $\delta^{*} \mathbf{y}=\nabla_{y} J_{0}^{T}$ remain the same, and it is really $d L$ vs. $d \tilde{L}$ (and their transpose) which change the overall TLM and ADM.

Introduction: can also compute the "joint gradient"

Homework

The time-varying problem

The time-varying problem

Consider time-evolving model:

$$
\begin{equation*}
\mathbf{x}(t)-L[\mathbf{x}(t-1)]=0 \tag{14}
\end{equation*}
$$

Define objective function:
time-mean volume over last $n+1$ timesteps $t_{f}-n, \ldots, t_{f}-1, t_{f}$:

$$
\begin{equation*}
J_{0}[\mathbf{x}]=\frac{1}{n+1}\left(V\left[\mathbf{x}\left(t_{f}-n\right)\right]+\ldots+V\left[\mathbf{x}\left(t_{f}\right)\right]\right) \tag{15}
\end{equation*}
$$

Define Lagrangian:

$$
\begin{equation*}
J=J_{0}[\mathbf{x}]-\sum_{1}^{t_{f}} \boldsymbol{\mu}^{T}(t)\{\mathbf{x}(t)-L[\mathbf{x}(t-1)]\} \tag{16}
\end{equation*}
$$

$$
\begin{array}{rlr}
\frac{\partial J}{\partial \mu(t)}= & \mathbf{x}(t)-L[\mathbf{x}(t-1)]=0 & 1 \leq t \leq t_{f} \\
\frac{\partial J}{\partial \mathbf{x}(t)}= & \frac{\partial J_{0}}{\partial \mathbf{x}(t)}-\mu(t) & \\
& +\left[\frac{\partial L[\mathbf{x}(t)]}{\partial \mathbf{x}(t)}\right]^{T} \mu(t+1)=0 & 0<t<t_{f} \\
\frac{\partial J}{\partial \mathbf{x}\left(t_{f}\right)}= & \frac{\partial J_{0}}{\partial \mathbf{x}\left(t_{f}\right)}-\mu\left(t_{f}\right)=0 & t=t_{f} \\
\frac{\partial J}{\partial \mathbf{x}(0)}=\frac{\partial J_{0}}{\partial \mathbf{x}(0)}-\left[\frac{\partial L[\mathbf{x}(0)]}{\partial \mathbf{x}(0)}\right]^{T} \mu(1) & t_{0}=0 \tag{17d}
\end{array}
$$

The time-varying problem: adjoint time-stepping
Successive evaluation backward in time, starting at $t=t_{f}$:

$$
\mu\left(t_{f}\right)=\frac{\partial J_{0}}{\partial \mathbf{x}\left(t_{f}\right)}=\frac{1}{n+1} \frac{\partial V\left[\mathbf{x}\left(t_{f}\right)\right]}{\partial \mathbf{x}\left(t_{f}\right)}
$$

$n+1$ time steps earlier, at $t=t_{f}-n$, and using the results of $\mu\left(t_{f}\right), \ldots, \mu\left(t_{f}-n+1\right)$, we obtain:

$$
\begin{aligned}
\mu\left(t_{f}-n\right)= & \frac{1}{n+1}\left\{\frac{\partial V\left[\mathbf{x}\left(t_{f}-n\right)\right]}{\partial \mathbf{x}\left(t_{f}-n\right)}\right. \\
& +\left[\frac{\partial L\left[\mathbf{x}\left(t_{f}-n\right)\right]}{\partial \mathbf{x}\left(t_{f}-n\right)}\right]^{T} \cdot \frac{\partial V\left[\mathbf{x}\left(t_{f}-n+1\right)\right]}{\partial \mathbf{x}\left(t_{f}-n+1\right)} \\
& +\ldots \\
& +\left[\frac{\partial L\left[\mathbf{x}\left(t_{f}-n\right)\right]}{\partial \mathbf{x}\left(t_{f}-n\right)}\right]^{T} \cdot \ldots \cdot\left[\frac{\partial L\left[\mathbf{x}\left(t_{f}-1\right)\right]}{\partial \mathbf{x}\left(t_{f}-1\right)}\right]^{T} \\
& \left.\cdot \frac{\partial V\left[\mathbf{x}\left(t_{f}\right)\right]}{\partial \mathbf{x}\left(t_{f}\right)}\right\}
\end{aligned}
$$

The time-varying problem: interpretation

- Lagrange multiplier $\mu(t)$ provides complete sensitivity of J_{0} at time t by accumulating all partial derivatives of J_{0} with respect to \mathbf{x} from each time step $t_{f}, t_{f}-1, \ldots, t$
- Those partials taken at later times $t+1, \ldots, t_{f}$, are propagated to time t via the adjoint model (ADM), which is the transpose $\left[\frac{\partial L[\mathbf{x}(t)]}{\mathbf{x}(t)}\right]^{T}$ of the model Jacobian or tangent linear model (TLM), $\frac{\partial \mathbf{x}(t+1)}{\mathbf{x}(t)}=\frac{\partial L[\mathbf{x}(t)]}{\mathbf{x}(t)}$
- contributions from different times linearly superimposed
- Simplifying the example objective function: instead of the time-mean, only the volume at the last time step t_{f} is chosen: now all terms except the one containing $\frac{\partial V\left[\mathbf{x}\left(t_{f}\right)\right]}{\partial \mathbf{x}\left(t_{f}\right)}$ vanish

The time-varying problem: the chain rule

$$
\begin{array}{rlll}
J_{0}: & \mathbf{x}(0) & \longmapsto \mathbf{y}=\mathbf{x}\left(t_{f}\right) & \longmapsto \\
\mathbf{x}(0) & \longmapsto L\left[\mathbf{x}\left(t_{f}-1\right)\right] & \longmapsto V\left[L\left[\mathbf{x}\left(t_{f}-1\right)\right]\right]
\end{array}
$$

is composite mapping for special case, $J_{0}=V\left[\mathbf{x}\left(t_{f}\right)\right]=V[\mathbf{y}]$

$$
\begin{aligned}
J_{0} & =V\left[\mathbf{x}\left(t_{f}\right)\right] \\
& =V[L[L[\ldots L[\mathbf{x}(0)]]]]
\end{aligned}
$$

and corresponding perturbation:

$$
\begin{aligned}
\delta J_{0} & =\frac{\partial V}{\partial \mathbf{x}\left(t_{f}\right)} \delta \mathbf{x}\left(t_{f}\right) \\
& =\frac{\partial V}{\partial \mathbf{x}\left(t_{f}\right)} \cdot \frac{\partial \mathbf{x}\left(t_{f}\right)}{\partial \mathbf{x}\left(t_{f}-1\right)} \cdot \ldots \cdot \frac{\partial \mathbf{x}(1)}{\partial \mathbf{x}(0)} \cdot \delta \mathbf{x}(0)
\end{aligned}
$$

The time-varying problem: the chain rule

$$
\begin{aligned}
\delta J_{0} & =\left\langle\left.\frac{\partial V}{\partial \mathbf{y}} \right\rvert\, \delta \mathbf{y}\right\rangle \\
& =\left\langle\frac{\partial V}{\partial \mathbf{x}\left(t_{f}\right)} \left\lvert\, \frac{\partial \mathbf{x}\left(t_{f}\right)}{\partial \mathbf{x}\left(t_{f}-1\right)} \cdot \ldots \cdot \frac{\partial \mathbf{x}(1)}{\partial \mathbf{x}(0)} \cdot \delta \mathbf{x}(0)\right.\right\rangle \\
& =\left\langle\left.\left[\frac{\partial \mathbf{x}(1)}{\partial \mathbf{x}(0)}\right]^{T} \cdot \ldots \cdot\left[\frac{\partial \mathbf{x}\left(t_{f}\right)}{\partial \mathbf{x}\left(t_{f}-1\right)}\right]^{T} \cdot \frac{\partial V}{\partial \mathbf{x}\left(t_{f}\right)} \right\rvert\, \delta \mathbf{x}(0)\right\rangle \\
& =\left\langle\left.\frac{\partial V}{\partial \mathbf{x}(0)} \right\rvert\, \delta \mathbf{x}(0)\right\rangle
\end{aligned}
$$

$$
\delta J_{0}=\left\langle\left.\frac{\partial V}{\partial \mathbf{x}\left(t_{f}\right)} \right\rvert\, \mathcal{T} \mathcal{L} \mathcal{M} \cdot \delta \mathbf{x}(0)\right\rangle=\left\langle\left.\mathcal{A D M} \cdot \frac{\partial V}{\partial \mathbf{x}\left(t_{f}\right)} \right\rvert\, \delta \mathbf{x}(0)\right\rangle
$$

Compare $\mathcal{A D} \mathcal{M}$ with expression for Lagrange multipliers.

3-box model of the THC

Inspired by work with Laure Zanna \& Eli Tziperman (2010)

DO $\mathrm{t}=1$, nTimeSteps

- calc. density

$$
\rho=-\alpha T+\beta S
$$

- calc. thermohaline transport

$$
U=U(\rho(T, S))
$$

- calc. tracer advection

$$
\frac{d}{d t} \operatorname{Tr}=f(\operatorname{Tr}, U)
$$

- calc. timestepping, update tracer fields $\operatorname{Tr}=\{T, S\}$

END DO

$$
\begin{array}{rl|l|l|}
\rho_{i} & =-\alpha T_{i}+\beta S_{i} \\
U & =u_{0}\left\{\rho_{2}-\left[H \rho_{1}+(1-H) \rho_{3}\right]\right\} \\
\frac{d T_{3}}{d t} & =U\left(T_{2}-T_{3}\right) / V_{3} & T_{1}, S_{1}+ & \\
\hline & & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\frac{d T_{3}}{d t} & =U\left(T_{3}-T_{2}\right), \quad \text { for } U \geq 0 \\
\text { diffT3 } & =u *(T 3-T 2)
\end{aligned}
$$

- total derivative:

$$
\delta \mathrm{diffT3}=\frac{\partial \mathrm{diffT3}}{\partial \mathrm{U}} \delta \mathrm{U}+\frac{\partial \mathrm{diffT3}}{\partial \mathrm{~T}_{2}} \delta \mathrm{~T}_{2}+\frac{\partial \mathrm{diffT3}}{\partial \mathrm{~T}_{3}} \delta \mathrm{~T}_{3}
$$

- in matrix form:

$$
\left(\begin{array}{c}
\delta \operatorname{diffT3} \\
\delta \mathrm{T}_{3} \\
\delta \mathrm{~T}_{2} \\
\delta \mathrm{U}
\end{array}\right)^{\lambda}=\left(\begin{array}{cccc}
0 & -\mathrm{U} & \mathrm{U} & \mathrm{~T} 3-\mathrm{T} 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
\delta \operatorname{diffT3} \\
\delta \mathrm{T}_{3} \\
\delta \mathrm{~T}_{2} \\
\delta \mathrm{U}
\end{array}\right)^{\lambda-1}
$$

- Transposed relationship yields:

$$
\left(\begin{array}{c}
\delta^{*} \operatorname{diffT3} \\
\delta^{*} \mathrm{~T}_{3} \\
\delta^{*} \mathrm{~T}_{2} \\
\delta^{*} \mathrm{U}
\end{array}\right)^{\lambda-1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-\mathrm{U} & 1 & 0 & 0 \\
\mathrm{U} & 0 & 1 & 0 \\
\mathrm{~T} 3-\mathrm{T} 1 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
\delta^{*} \operatorname{diffT3} \\
\delta^{*} \mathrm{~T}_{3} \\
\delta^{*} \mathrm{~T}_{2} \\
\delta^{*} \mathrm{U}
\end{array}\right)^{\lambda}
$$

- and thus adjoint code:

adT3	$=$	adT3	u*addiffT3
adT2	$=$	adT2	+
adU	$=$	adu + addiffT3	
addiffT3	$=$		

Note: state T2, T3, U are required to evaluate derivative at each time step, in reverse order!
\longrightarrow TANGENT linearity

Reverse order integration (i)

```
DO istep = 1, nTimeSteps
    - call density( }\rho
    - call transport(U)
    - call timestep(T,S)
    - call update(T,S)
END DO
```

DO istep = nTimeSteps, 1, -1
C recompute required variables

- DO iaux = 1, istep
- call density (ρ)
- call transport(U)
- call timestep (T, S)
- call update(T, S)

END DO

C perform adjoint timestep

- call adupdate (T, S)
- call adtimestep (T, S)
- call adtransport(U)
- call addensity (ρ)

END DO

Reverse order integration (ii)

```
DO iOuter = 1, nOuter
    - CADJ STORE T, S -> disk
    - DO iInner = 1, nInner
    - call density( }\rho
    - call transport(U)
    - call timestep(Tr)
    - call update(Tr)
    END DO
```

END DO

DO iOuter = nOuter, 1, -1

- CADJ RESTORE T, $S \leftarrow$ disk
- DO iInner = 1, nInner
- call density (ρ)
- call transport(U)
- CADJ STORE T, S, U
- call timestep(Tr)
- call update(Tr)

END DO

- DO iInner = nInner, $1,-1$
- call adupdate(adTr)
- call adtimestep(adTr)
- CADJ RESTORE T, S, U
- call adtransport(ad U)
- call addensity(ad ρ)

END DO

END DO

Reverse order integration (iii)

- Adjoint evaluated in reverse
\rightarrow model state at every time step required in reverse
\rightarrow all state stored or recomputed
- Solution: Checkpointing
e.g. Griewank (1992),

Retrepo et al. (1998)
storing vs. recomputation

Reverse order integration (iv)

- e.g. 3-level checkpointing:

$$
n_{\text {TimeSteps }}=n_{1} \cdot n_{2} \cdot n_{3}
$$

\rightarrow Storing: reduced from $n_{1} \cdot n_{2} \cdot n_{3}$ to

- disk: $n_{2}+n_{3}$,
- memory: n_{1}
\rightarrow CPU: $3 \cdot$ forward $+1 \cdot$ adjoint $\approx 5.5 \cdot$ forward
- Closely related to adjoint dump \& restart problem. Available queue sizes at HPC Centres may be limited
- Insertion of store directive requires detailed knowledge of code and AD tool behaviour
\longrightarrow not easy ("semi-automatic" differentiation only)

Ensure correctness of TLM or ADM derived gradient

Procedures to check that AD-derived gradient $G_{i}^{\text {ad }}$ is correct: consider perturbation of i-th control vector element u_{i} and $\Delta \vec{u}_{i}=\delta_{i j}$
finite difference vs. adjoint

$$
\begin{array}{ll}
G_{i}^{f d}=\frac{\mathcal{J}\left(u_{i}+\epsilon\right)-\mathcal{J}\left(u_{i}-\epsilon\right)}{2 \epsilon} & G_{i}^{t l}=\vec{\nabla}_{u} \mathcal{J} \cdot \Delta \vec{u}_{i}=\left(\vec{\nabla}_{u} \mathcal{J}\right)_{i} \\
R_{i}^{f d}=1-\frac{G_{i}^{f d}}{G_{i}^{\text {ad }}} & R_{i}^{t l}=1-\frac{G_{i}^{t l}}{G_{i}^{\text {ad }}}
\end{array}
$$

\rightarrow can test 'correctness' of ADM and TLM gradients $G_{i}^{\text {ad }} G_{i}^{\text {ad }}$
\rightarrow can test 'time horizon' of linearity assumption
Other approaches: e.g., Taylor remainder test (Patrick Farrell)

Input/Output - active file handling

I/O of active variables should be accounted for in derivative
READ assigning a value to a variable
WRITE referencing a variable

code	hypothetical code	adjoint hypothetical code	adjoint code
OPEN (8)		ADXD $=0$.	OPEN (9)
	:	:	:
WRITE (8) X	$\mathrm{XD}=\mathrm{X}$	$\begin{aligned} & \text { ADXD }=A D X D+A D Z \\ & A D Z=0 . \end{aligned}$	$\begin{aligned} & \text { WRITE (9) ADZ } \\ & \text { ADZ }=0 . \end{aligned}$
	.		
READ (8) Z	$\mathrm{Z}=\mathrm{XD}$	$\begin{aligned} & \operatorname{ADX}=A D X+A D X D \\ & \text { ADXD }=0 . \end{aligned}$	$\begin{aligned} & \text { READ (9) ADXD } \\ & \text { ADX }=\operatorname{ADX}+\operatorname{ADXD} \\ & \operatorname{ADXD}=0 . \end{aligned}$
	:		:
CLOSE (8)			CLOSE (9)

from Giering \& Kaminski (1998)

Scalability

- domain decomposition (tiles) \& overlaps (halos)
- split into extensive on-processor and global phase

\Leftrightarrow Exchange
\uparrow Global Sum

Global communication/arithmetic op.'s supported by MITgcm's intermediate layer (WRAPPER) which need hand-written adjoint forms

operation/primitive	forward		reverse
\bullet communication $(\mathrm{MPI}, \ldots):$	send	\longleftrightarrow	receive
• arithmetic (global sum,,\ldots):	gather	\longleftrightarrow	scatter
\bullet active parallel I/O:	read	\longleftrightarrow	write

Why Algorithmic/Automatic Differentiation (AD)?

- Inaccuracy of finite-differences has negative impact on convergence of your algorithm. You need exact derivatives.
- The dimension $\left(n \sim O\left(10^{8}\right)\right.$) of your problem is too lage for finite-difference or directional derivatives (tangent linear model) to be feasible approaches.
You need efficient/cheap gradients.
- Your numerical code changes over time due to improvements, restructuring, new insights resulting from ongoing research and development. The corresponding derivative codes need to be updated too. Many man hours may be involved (and error-prone). You need a derivative code "compiler".
- Changing the control space (i.e. type of independent variables) may change structure of the derivative code.
You need automated way to re-generate derivative code.

