Modeling ice/ocean interactions

Hélène Seroussi

Jet Propulsion Laboratory - California Institute of Technology

Introduction: ice sheets

Ice front retreat and glacier acceleration
Modeled forced with ice front position

Simulated ice front migration

Bondzio et al., 2018

Ensemble for unknow parameters

GRACE Observations of Antarctic Ice Mass Changes

Antarctic Ice Loss
(meters water equivalent relative to 2002)

Outline

1. Modeling ice sheets and ice shelves
2. Ice shelves around Antarctica
3. Modeling ice shelf melt
4. Coupling ice and ocean models
5. Can we parameterize ice shelf melt?

Mass conservation

Continuity equation: $\quad \frac{D \rho}{D t}+\rho \nabla \cdot \mathbf{v}=0$
Incompressibility: a continuum is said to be incompressible if its density remains unchanged during motion

$$
\frac{D \rho}{D t}=0
$$

Mass balance of incompressible fluids:

$$
\nabla \cdot \mathbf{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}=0
$$

Incompressibility:

$$
\nabla \cdot \mathbf{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}=0
$$

Surface evolution:

$$
\begin{aligned}
& \frac{\partial s}{\partial t}+v_{x}(s) \frac{\partial s}{\partial x}+v_{y}(s) \frac{\partial s}{\partial y}-v_{z}(s)=\dot{M}_{s} \\
& \frac{\partial b}{\partial t}+v_{x}(b) \frac{\partial b}{\partial x}+v_{y}(b) \frac{\partial b}{\partial y}-v_{z}(b)=\dot{M}_{b}
\end{aligned}
$$

- s glacier surface elevation (m)
- b.glacier base elevation (m)
- M_{s} surface mass balance (m / s ice equivalent, positive when accumulation)
- \dot{M}_{b} basal mass balance (m / s ice equivalent, positive when melting)

Energy balance

Conservation of energy: $\quad \rho \frac{D}{D t}(c T)=\nabla \cdot k_{t h} \nabla T+\boldsymbol{\Phi}$

- T ice temperature (K)
- c ice thermal conductivity $(\mathrm{W} / \mathrm{m} / \mathrm{K})$
- $k_{t h}$ ice heat capacity ($\mathrm{J} / \mathrm{K} / \mathrm{kg}$)
- $\Phi=\sigma: \varepsilon$ deformational heating (W)

Ice energy balance:

$$
\frac{\partial T}{\partial t}=-\mathbf{v} \cdot \nabla T+\frac{k_{t h}}{\rho c} \Delta T+\frac{\mathbf{\Phi}}{\rho c}
$$

Phase change included by capturing cold/temperate transition or using enthalpy formulations

Momentum balance

Variable	Glacier	Ice sheet	Ice stream
V_{0}	10^{-6}	10^{-5}	10^{-4}
G_{0}	10	10	10
R_{0}	10^{4}	10^{6}	10^{5}
Ω_{0}	10^{-4}	10^{-4}	10^{-4}
σ_{0}	10^{5}	10^{5}	10^{5}
ρ_{0}	10^{3}	10^{3}	10^{3}
T_{0}	R_{0} / V_{0}	R_{0} / V_{0}	R_{0} / V_{0}
$S t$	1	1	1
$R e$	10^{-14}	10^{-12}	10^{-10}
$F r$	10^{-17}	10^{-17}	10^{-14}
$R o$	10^{-6}	10^{-7}	10^{-7}

$$
\begin{aligned}
S t & =\frac{R_{0}}{T_{0} V_{0}} \\
R e & =\frac{\rho_{0} V_{0}^{2}}{\sigma_{0}} \\
F r & =\frac{V_{0}^{2}}{R_{0} G_{0}} \\
R o & =\frac{V_{0}}{2 \Omega_{0} R_{0}}
\end{aligned}
$$

Momentum balance

Incompressible viscous fluid: $\quad \sigma^{\prime}=2 \mu \varepsilon$
Glen's flow law (1955):

$$
\mu=\frac{B}{2 \dot{\varepsilon}_{e}^{1-1 / n}}
$$

Boundary conditions:

- Ice/air interface: free surface $\boldsymbol{\sigma} \cdot \boldsymbol{n} \simeq 0$
- Ice/ocean interface: water pressure $\boldsymbol{\sigma} \cdot \boldsymbol{n}=P_{w} \boldsymbol{n}$
- Ice/bedrock interface: $\quad\left(\boldsymbol{\sigma} \cdot \boldsymbol{n}+\alpha^{2} \mathbf{v}\right)_{\|}=\mathbf{0}$

$$
\mathbf{v} \cdot \mathbf{n}=-\dot{M}_{b} n_{z}
$$

Shallow aspect ratio: Shallow ice approximations (shallow ice and shallow shelf) to separate horizontal and vertical motion

Grounding line or grounding zone?

F: landward limit of ice flexure from tidal movement G: limit of ice floatation (grounding line)
I_{b} : break-in slope
I_{m} : local elevation minimum
H : seaward limit of ice flexure from tidal movement

Ririghker ett aill., 20009

Grounding line migration

Contact problem

- Full-Stokes stress balance
- Boundary condition:

Ice/bedrock if:
$z_{\mathrm{b}}(x, t)=b(x) \quad$ and $\quad-\left.\sigma_{\mathrm{nn}}\right|_{\mathrm{b}}>p_{\mathrm{w}}\left(z_{\mathrm{b}}, t\right)$,
Ice/water if:
$z_{\mathrm{b}}(x, t)>b(x)$,
or $\quad z_{\mathrm{b}}(x, t)=b(x) \quad$ and $\quad-\left.\sigma_{\mathrm{nn}}\right|_{\mathrm{b}} \leq p_{\mathrm{w}}\left(z_{\mathrm{b}}, t\right)$,

Hydrostatic assumption

- Simplified stress balance
- Hydrostatic condition: Hydrostatic thickness:

$$
H_{\mathrm{f}}=-\frac{\rho_{\mathrm{w}}}{\rho_{\mathrm{i}}} r, \quad r<0
$$

$H>H_{\mathrm{f}}$ ice is grounded,
$H=H_{\mathrm{f}}$ grounding line position,
$H<H_{\mathrm{f}}$ ice is floating.

- Very high resolution required in the grounding line area

Energy balance

- Heat transfer

$$
\frac{\partial T}{\partial t}=-\mathbf{v} \cdot \nabla T+\frac{k_{t h}}{\rho c} \Delta T+\frac{\Phi}{\rho c}
$$

Stress balance

- Incompressible Stokes flow $\nabla \cdot \boldsymbol{\sigma}^{\prime}-\nabla P+\rho \mathbf{g}=\mathbf{0}$

Antarctic ice flow

Outline

1. Modeling ice sheets and ice shelves
2. Ice shelves around Antarctica
3. Modeling ice shelf melt
4. Coupling ice and ocean models
5. Can we parameterize ice shelf melt?

- Limited direct observations
- Melt rate estimates:

$$
\frac{\partial H}{\partial t}+\nabla \cdot H \overline{\mathbf{v}}=\dot{M}_{s}-\dot{M}_{b}
$$

- Equal contribution of calving and melting ($\sim 1300 \mathrm{Gt} / \mathrm{yr}$)
- Similar results in Depoorter et al. (2013)
- Variety of ice shelves (size, melt rate, calving rate, ...)

Rignot et al., 2013

Ice shelf buttressing

Fuerst et al., 2016

Larsen B breakup: a natural experiment

Larsen B break-up in 2002

Crane and Jorum Glacier

Flask and Leppard Glacier

Scambos et al., 2004

Green Glacier

Impact of ice shelf melt

Change in grounding line flux for a 1 m thinning over $20 \times 20 \mathrm{~km}^{2}$

Elevation change

2003-2009

Sutterley et al., 2014

Acceleration

Mouginot et al., 2014

Grounding line retreat

Rignot et al., 2014

Outline

1. Modeling ice sheets and ice shelves
2. Ice shelves around Antarctica
3. Modeling ice shelf melt
4. Coupling ice and ocean models
5. Can we parameterize ice shelf melt?

Greenland tidewater glacier

- Near vertical face
- Large amount of subglacial runoff with strong seasonal signal
- Small systems (1 kms)

Antarctic Ice shelf

- Near horizontal face
- Limited amount of subglacial runoff with no seasonal signal
- Large systems (100 kms)

Southern Ocean

Rignot et al., 2013

Schmidtko et al., 2014

Cold ice shelves

- Dense Shelf Water dominates in subice cavity
- Shelf Water has temperature close to the surface freezing point
- Brine rejection during sea ice growth
- Pressure dependence of the freezing point so melt at depth
- Refreezing occurs as water produced by melting becomes supercooled as it rises
- Ross/Weddell Sea

Jenkins et al., 2016

Warm ice shelves

Jenkins et al., 2016

Varying ocean conditions

Ice shelf melt from an ocean model

Three equations model (Jenkins et al., 2010)

- Heat balance at the phase change interface

$$
\rho_{i} m L_{i}=\left.\rho_{i} c_{i} \kappa_{i} \frac{\partial T_{i}}{\partial z}\right|_{b}-\rho_{w} c_{w} \gamma_{T}\left(T_{f}-T_{w}\right)
$$

- Freezing point of sea water

$$
T_{f}=a S_{b}+b+c z_{b}
$$

- Salt balance at the phase change interface

$$
\rho_{i} m\left(S_{b}-S_{i}\right)=-\rho_{w} \gamma_{S}\left(S_{b}-S_{w}\right)
$$

- Velocity dependent heat and salt exchange coefficients

$$
\gamma_{T}=\Gamma_{T} \sqrt{C_{d}\left(u_{b}^{2}+u_{\text {tide }}^{2}\right)} \quad \gamma_{S}=\Gamma_{S} \sqrt{C_{d}\left(u_{b}^{2}+u_{\text {tide }}^{2}\right)}
$$

Ocean circulation

Temperature @ 531.15 - Day: 02-Jan-1998

Schodlok et al., 2012

Varying ocean conditions

Melt spatially and temporally variable: example of Pine Island ice shelf

Schodlok et al., 2012

Impact of unknow coefficients

Outline

1. Modeling ice sheets and ice shelves
2. Ice shelves around Antarctica
3. Modeling ice shelf melt
4. Coupling ice and ocean models
5. Can we parameterize ice shelf melt?

Need for coupled ice/ocean model ?

Ice dynamics sensitive to ocean melting
(Joughin et al.,2012, 2014; Favier et al., 2014; Seroussi et al., 2014)

Favier et al., 2014

Basal melting sensitive to cavity shape
(Goldberg et al., 2012; Schodlok et al., 2012)

Schodlok et al., 2012

Coupled ice/ocean simulations

- Interpolation between grids
- Timescales
- Evolution of modeled domain

Ice domain:

- ALE
- Horizontal layers follow topography

Ocean domain:

- Fixed grid
- Remeshing
- Add/remove cells

Goldberg et al., 2018

Complex grounding line retreat from a seabed ridge

De Rydt and Gudmundsson, 2016

Simulation of Thwaites Glacier

ISSM-MITgcm simulations:

- 50 year simulations
- 1 month coupling
- 500 m resolution at GL
(sub-element parameterization)
- 2 km ocean model
- 5 year spin-up of ocean with fixed cavity shape

Experiments:

- 1992 forcing (ECCO)
- $1992+0.5^{\circ} \mathrm{C}$ forcing
- Uncoupled

Seroussi et al., 2017

Ocean circulation

Simulated melt rates:

- Pine Island: $88 \mathrm{Gt} / \mathrm{yr}$
- Thwaites: $81 \mathrm{Gt} / \mathrm{y}$ r
- Cosgrove: $37 \mathrm{Gt} / \mathrm{yr}$
- Dotson/Crosson: 24Gt/yr

Potential temperature at 513 m depth

Evolution of Thwaites Glacier

Comparison with observations

Grounding line

Comparison with parameterized melt

Initial melt

Melt parameterization

Uncoupled simulation (1992UC)

$\underset{\text { E }}{\substack{\text { E }}}$	-50
	40
	30
	20
	10
	${ }_{0}$

Grounding line evolution

Outline

1. Modeling ice sheets and ice shelves
2. Ice shelves around Antarctica
3. Modeling ice shelf melt
4. Coupling ice and ocean models
5. Can we parameterize ice shelf melt?

Parameterizations of ocean conditions

- Depth parameterization
- Quadratic local dependence on thermal forcing

$$
\dot{m}=\gamma_{T}\left(\frac{\rho_{w} c_{p o}}{\rho_{i} L_{i}}\right)^{2}\left(T_{o}-T_{f}\right)^{2}
$$

Holland et al. 2008

- Quadratic local/non local dependence on thermal forcing

$$
\dot{m}=\gamma_{T}\left(\frac{\rho_{w} c_{p o}}{\rho_{i} L_{i}}\right)^{2}\left\langle T_{o}-T_{f}\right\rangle\left(T_{o}-T_{f}\right)
$$

$$
\text { Favier et al. GMDD } 2019
$$

- PICO (Potsdam Ice-shelf Cavity mOdel): Box model
- PICOp (PICO + plume model)

$$
\begin{array}{ll}
q\left(T_{k-1}-T_{k}\right)-A_{k} m_{k} \frac{\rho_{i}}{\rho_{w}} \frac{L}{c_{p}} & =0 \\
q\left(S_{k-1}-S_{k}\right)-A_{k} m_{k} S_{k} & =0
\end{array}
$$

- T_{k} Temperature of B_{k}
- A_{k} box surface area
- m_{k} melt rate of B_{k}
- $q=C\left(\rho_{0}-\rho_{1}\right)$ strength of the overturning circulation

Reese et al., 2018

Comparison of ice shelf melt rates

Depth-Dependent (Modeled)

Summary

- Ice is a laminar viscous incompressible material
- Ice/ocean interactions are driving most of the dynamic changes observed in the Amundsen Sea (and elsewhere)
- Coupled ice-ocean model:
- produce more realistic estimates of glacier retreat rates than ice model driven by parameterized melt
- limited observations to constrain and validate models
- Ice sheets starting to be included in Earth System models mostly for ice/atmosphere coupling, not ocean (need ocean cavities)

Questions?

© Copyright 2019 California Institute of Technology

