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OverviewO

ØThe Global Ocean Freshwater Cycle

ØLinks to Salinity

ØChanges in the Water Cycle and Salinity

ØE-P-R, Recycling, and Implied Exports through 
E:P Ratios

ØNASA Field Campaigns: Satellites and In Situ
Measurements

ØConclusions



I Global Salinity

ØA Smapshot (pardon the pun) of Global Salinity during the SPURS-2 
field campaign, September 2017.

Ø ITCZ, Amazon, BoB (end of monsoon). Also RFI/Land



I The Global Water Cycle
ØOceans 

dominate 
fluxes and 
reservoirs

ØGenerally 
‘mis-
represented’



I

ØStephens et al, 2012:  An update on Earth's energy balance in 
light of the latest global observations, Nature Geoscience, 5(10), 
691-696

The Link to the Energy Balance



I From Clouds…
Ø ITCZ 

clearly 
visible

ØHigh 
latitudes 

ØSub-
tropical 
gyres 
almost 
cloud-free

ØSource: 
Blue 
Marble 
NG



I …to Rain
Excess E

Excess P

Ø IMERG Precipitation snapshot (half-hourly)



I Mean Precipitation (1987-2006)

ØFrom Schanze & Schmitt (2010), adjusted for E-P-R=0

Ø ITCZ, Kuroshio, Gulf Stream



I Mean Evaporation (1987-2006)

ØOAFlux 3.1, From Schanze & Schmitt (2010), E-P-R=0 adjusted

ØPeak in WBCs (recycling) & SSS maximum areas



I Mean E-P (1987-2006)
Excess E

Excess P

ØFrom Schanze & Schmitt (2010), adjusted for E-P-R=0

ØAdvective effects visible



I Salinity and Freshwater Flux

ØNorth Atlantic E-P (left) and Aquarius Salinity (right) are highly 
correlated

ØE-P=0 line right at vegetative index transition in Africa



II Clausius-Clapeyron 

Ø Increased water 
holding 
capability in the 
atmosphere

Ø Implied 
amplification of 
water cycle with 
increasing global 
temperatures

Ø~7.6%/K



II Pattern Amplification

Ø temperatures 
are rising…

ØChanges in SSS?



II Pattern Amplification

ØDurack et al., 2010 (J. Clim) & 2012 (Science)

ØSalinity is hypersensitive to change in the water cycle

Mean SSS 50-Year SSS Change



CONTEMPORARY CHANGES IN WATER CYCLE: Average amplification 
~5%* – consistent with 
Clausius-Clapeyron
equation
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Vinogradova & Ponte, 2017, J. Climate

no amplification wet get wetter or dry get 
dryer

PA=5%

anomaly

trend

*Equivalent 7.6% °C and 0.65 °C 
change

E-P Pattern Amplification in ECCO
(Slides: Nadya Vinogradova-Shiffer, NASA HQ)

II



How do we reconcile 
various measurements 
into a consistent ocean 

state estimate?  

ECCO uses basic 
physical principals 

and understanding of 
data uncertainties 

F = ma

Estimating the 
Circulation 

and Climate 
of the Ocean 

(ECCO)

NASA’s ECCO

Example: multi-platform salinity 
estimate from ECCO              

ECCO website: ecco.jpl.nasa.gov                                         

ECCO in the cloud:  Shiffer et al..2016; 
Vinogradova et al., 2017

Slide: Nadya Vinogradova-Shiffer

II



CONTEMPORARY CHANGES IN SALINITY: Little evidence of 
global amplification, 
despite strong regional 
changes

30 34 38

psu

A N N UA L  M E A N  S A L I N I T Y CH A N G E  I N  S A L I N I T Y  S I N CE  1993

-0.3 0 0.3

psu

R E G I O N S  O F  A M P L I F I C AT I O N

no amplification fresh get fresher or salty get saltier

PA<1%

anomaly

trend
Vinogradova & Ponte (2017), J. Climate

Δ E - P
?

SSS Pattern Amplification in ECCO
(Slide: Nadya Vinogradova-Shiffer, NASA HQ)

II



Role of natural variability in modulating SSS trends

Vinogradova & Ponte, 2017, JCLim

Total SSS trend since 1993 SSS trend explained by IPO Residual (non-IPO) SSS trend

IPO,  Hanley et al., 2015

SSS Pattern Amplification in ECCO (2)
(Slide: Nadya Vinogradova-Shiffer, NASA HQ)

II



II

Number of observations 
for each 2.5° grid box. For 
NCEP-1 Strong changes 
are evident at indicated 
times. From: Kistler et al., 
2001.

SSM/I Satellite, Image: NASA

Nimbus

AVHRR

SSM/I

Surface Fluxes: Homogeneity



Surface Fluxes: Homogeneity

Ø This analysis visualizes spectral changes (~variance) over time

Ø (relatively) homogenous period for E-P starts in 1987, including RA

Ø Introduction of AVHRR (1982 -1985), and SSM/I (1987)

OAFlux E GPCP P

II



E and P Uncertainties (large!)
ØNot only are there vast differences between E and P 

products, they are also often internally inconsistent.

ØExceptions: Forced balance (e.g. CORE.2) or state estimates 
(ECCO v4)

ØERA40 P imbalanced by more than 2.4 Sv with E product 
over the ocean alone.

II



Ø Imbalance of 0.41 
Sv between OAFlux 
E and GPCP P and 
Dai&Trenberth R

Ø Error bars much 
larger on E, P, 
possibly R.

Ø Closes within error 
bars

E-P(-R) Balance 1987-2006 II



II EOF Analysis of E-P: Mode 1 - 29.4% 

ØSeasonal cycle 
shows ‘flip-flop’ 
pattern

ØReversal of 
pattern along 
eastern 
boundaries of 
basins

ØNo clear change 
in amplitude 
over time
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II EOF Analysis of E-P: Mode 2 – 9.2% 

Ø Intertropical 
Convergence Zone 
(ITCZ) shift

ØKuroshio and Gulf 
stream are clearly 
negative

Ø12-month period of 
cycle, ENSO effects 
around 1997

ØNo clear change in 
amplitude
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II EOF Analysis of E-P: Mode 3 – 4.8% 

1989 La Niña

1992/1993 El Niño

1997 El Niño

1999/2000 La Niña

ENSO Multivariate Index 
(MEI). From: NOAA
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II Basin Freshwater Transports

Basin transports in 108 kgs-1.

ØArctic Ocean freshwater balance matches observations 
(freshwater +~3*108 kgs-1)

ØSignificant changes compared to Wijffels et al. (1992)



Salinity Variance EstimatesII
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loss of freshwater

ØGeneration of 
salinity variance

ØDissipation through 
downgradient flux



Salinity Variance EstimatesII
ØThis is integrating the 

previous diagram

ØBin size: 0.1 in salinity

ØNet evaporation 
(~salt input) at high 
salinities, net 
precipitation in fresh 
areas

ØDown-gradient flux in 
the interior 
(advective and 
diffusive)
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III Sources and Sinks of the Global Water Cycle

Trivial (but sometimes overlooked):

E and P occur on different space- and time-scales



III Sources and Sinks of the Global Water Cycle

Evaporation-Precipitation binned by SST

Subpolar
P

Subtropical
E

ITCZ



III Sources and Sinks of the Global Water Cycle

Positive Component (E>P)



III Sources and Sinks of the Global Water Cycle

Negative Component (P>E)



III Sources and Sinks of the Global Water Cycle

P>E in the ITCZ



III Sources and Sinks of the Global Water Cycle

P>E outside the ITCZ (“high” latitudes)



III Sources and Sinks of the Global Water Cycle

E:P Ratio, quite different from E-P (black line is 1:1)

P>E

P>>E

E>>P

P=E



III Sources and Sinks of the Global Water Cycle

Global E:P by Latitude

Boundary
Currents

Recycling
E~P             

Subtropical
Gyres
E>P

ITCZ, P>E

Subpolar
Lows
P>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Global E:P by Absolute Salinity (g/kg)

Boundary
Currents

Recycling
E~P             

Subtropical
Gyres
E>P

High SSS

ITCZ, P>E
Low SSS  

Subpolar
Lows
P>E

Low SSS

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Atlantic E:P by Latitude

Boundary
Currents

Recycling
E~P             

Subtropical
Gyres
E>P

ITCZ, P>E

Subpolar
Lows
P>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Atlantic E:P by Absolute Salinity (g/kg)

Boundary
Currents

Recycling
E~P             

Subtropical
Gyres
E>P

ITCZ, P>E

Subpolar
Lows
P>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Pacific Ocean E:P by Latitude

Boundary
Currents

Recycling
E~P             

Subtropical
Gyres
E>P

ITCZ, P>E

Subpolar
Lows
P>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Pacific Ocean E:P by Absolute Salinity (g/kg)

Boundary
Currents

Recycling
E~P             

Subtropical
Gyres
E>P

ITCZ, P>E

Subpolar
Lows
P>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Indian Ocean E:P by Latitude

Subtropical
Gyres
E>P

ITCZ, P>E

Subpolar
Lows
P>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Indian Ocean E:P by Absolute Salinity (g/kg)

Subtropical
Gyres
E>P

ITCZ, P>E

Subpolar
Lows
P>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Southern Ocean E:P by Latitude

ITCZ, P>E

Subpolar
Lows
P>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Southern Ocean E:P by Absolute Salinity (g/kg)

Subpolar
Lows
P>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Arctic E:P by Latitude

P~E
P>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Arctic E:P by Absolute Salinity (g/kg)

P~EP>E

Terrestrial
E&P

Average



III Sources and Sinks of the Global Water Cycle

Global export: ~4.5 Sv. E in E>P: 8.8 Sv (~2:1) 

1.9 (4.2)

1.4 
(2.4)

1.2
(2.2)



III Sources and Sinks of the Global Water Cycle

Global Values: ~ -3.3 Sv, P in P>E ~ 8.1



III Sources and Sinks of the Global Water Cycle

Global Value ~ -1.2 Sv. P in P>E: ~3.7 Sv. (1:3) 

-0.9 (2.5)
-0.1
(0.4)

-0.2
(0.8)



III Sources and Sinks of the Global Water Cycle

Global Value: ~ -2.1 Sv. P in P>E: ~ -4.5 Sv (1:2) 

-0.8 (1.2)

-0.3
(0.6)

-0.2
(0.5)-0.2 (0.8)

-0.4 (0.9)

-0.1 (0.3)

-0.08 (0.15)



C Water Cycle Conclusions

Ø Approximately 4.5 Sv export from subtropics

Ø ~1.2 Sv to ITCZ, 1.2 to land & 2.1 Sv to high latitudes

Ø Recycling is strongest in ITCZ: P=3-4E

Ø Average recycling in evaporation dominated areas is ~ 
E=2P

Ø Excellent agreement with recent isotope estimates 
(Benetti et al., 2017)

Ø Implications for both variance generation and remote 
sensing (indicator for patchiness)



III NASA Field Campaigns

Ø With the launch of Aquarius/SAC-D, NASA’s Ocean Salinity 
Science Team (OSST) has grown

Ø Dedicated Process Studies to understand the link 
between E-P(-R) and SSS

Ø SPURS-1 was located in the North Atlantic Salinity 
Maximum (subtropical gyre), 2012-2013

Ø SPURS-2 was located in the East Pacific Fresh Pool under 
the Intertropical Convergence Zone (ITCZ)



III In Situ Sampling

Ø Argo Float Distribution, realistically sampling 2.5 x 2.5 °
every month

Ø Sampling depth mismatch



III In Situ – Satellite Match-Ups

Ø We match each in situ observation with L2 SMAP data…

Ø 50km, +/- 3.5 day search, averaging all data

Ø Overall excellent, some remaining problems with RFI/Galaxy/Land



III In Situ – Satellite Match-Ups

Ø Same search criteria as before, but taking the absolute value

Ø Mean absolute difference for the duration of SMAP (May 2015 - Mar 2019)



III SPURS-1: Evaporation Dominated

Ø Salt is a useful tracer (Isohaline Budgeting): Mean advection along 
constant salinity, balance between surface fluxes and lateral and 
vertical mixing.

Ø Bryan and Bachman, 2015; Schmitt and Blair, 2015.



III

SPURS2 – J.J. Schanze, Lagerloef, G. Schmitt, R.W. and Hodges, B.A.: Sea Snake 2.0
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Ø Moderate (1-1.5 m/yr) Evaporation (OAFlux 3)

Ø Heavy precipitation (~3m/yr) (GPCP 2.2)

SPURS2: Precipitation Dominated



III
Excess E

Excess P

ØPeak precipitation ~10mm/hr in the ITCZ

The Precipitation Problem (II)



III The Precipitation Problem

Ø Precipitation is extremely patchy

Ø IMERG is considered “high resolution”

Ø Stratiform vs convective rain (bad news for      satellites)

Figure courtesy of E. Thompson, APL-UW



III

Ø Precipitation is extremely patchy

Ø IMERG is considered “high resolution”

Ø Stratiform vs convective rainure courtesy of E. Thompson, 
APL-UW



UV Sterilizer

SBE
45

TSG
VDB

1
VDB

2

Flow Meter

Strainer

DB1

‘Slow snake’ intake (floating)

III Salinity Snake (II)



III ΔSSS

ØDifference between radiometric depth (1-2 cm) and bulk (5m) 
salinity, clearly wind speed dependent!

Surface freshening
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III

Ø Systematic vertical ΔSSS (5m-0m) in ITCZ (<12°) from SPURS-2 
salinity snake deployments is 0.07 g/kg

Ø Patchy rain causes freshwater lenses, filaments, fronts…

Ø These features increase the RMSD (not RMSE) between in-situ and 
satellite observations -> 0.17 g/kg 

Ø Sub-footprint variability may be underestimated when using bulk 
salinity measurements (~5m):

Ø Horizontal variance decreases with depth (RR1720, ITCZ)

Ø … consequently a problem for state estimates, too, even when 
using L3 data

In Situ Sampling

Salinity Snake USPS 2m USPS 3m TSG 5m
0.26 0.19 0.18 0.16



III
Ø Very good match-up between Salinity Snake and SMAP

Ø Low wind speeds (2-5 m/s), vessel has just turned to 090T, steaming 
East through the freshwater

Ø Note the rain (>100mm in less than 2 hours)

A Case Study: SPURS-2 Freshwater Lens



III A Case Study: SPURS-2 Freshwater Lens

Ø 50 km 
feature with 
>4 g/kg peak 
freshening

Ø Evident in 
SMAP

Ø Anomalies 
visible in 
SMAP and 
SMOS

Ø Enhanced 
mixing and 
interleaving



III A Simple Model to Explain Dissipation

Ø 100 m 
horizontal 
resolution, 150 
vertical levels

Ø Constant 4 m/s 
wind from SE

Ø Sharp front with 
enhanced 
mixing 
replicated

Ø Wind-driven 
surface 
velocities highly 
asymmetrical 
(see vectors)



C The Take-Home

Ø The Global Ocean Freshwater Cycle and Salinity are 
intrinsically linked

Ø Evaporation and Precipitation occur on very different space 
and time scales

Ø Estimates of E and P are (highly) questionable in the tropics 

Ø Satellite SSS, especially SMAP, has become incredibly useful

Ø Salinity budgets help in understanding the surface 
flux/advective/diffusive balance

Ø Small scale patchiness (particularly in the ITCZ) is 
underestimated



Thank You!
Questions?


