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Challenges of modeling the Arctic

Small baroclinic radius of deformation
(lengthscale of fastest instability growth)

stratification
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Chelton et al. [1998] F1G. 6. Global contour map of the 1° X 17 first baroclinic Rossby radius of deformation A, in kilometers computed by Eq. (2.3) from the

first baroclinic gravity-wave phase speed shown in Fig. 2. Water depths shallower than 3500 m are shaded.



Challenges of modeling the Arctic
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Challenges in obtaining Arctic state estimates

Lack of Observations
Unconstrained
parameters & forcings

General: true in the
world ocean, but
exacerbated in Arctic
due to harsh conditions
and presence of seaice
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Nguyen et al., 2019, in prep

What separates ECCO from other Arctic
Ocean-Sea ice Modeling Efforts?
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ECCO-Arctic: the beginning

ECCO phase 1l (ECCO2):
18-km global, cubed-sphere grid

Sea ice code “history”
1.

NN NRVY

. Martin Losch improved dynamics &

Dimitris Menemenlis -

adapted existing sea ice %’E;,,,_,,,,W,,, g;,.' o
code [Zhang et al., 1998], j# o h“‘/‘ :

for MITgcm

performed extensive testing [Losch et al., 2010] ";; ‘
Patrick Heimbach: sea ice adjoint

. lan Fenty’s improved sea ice code (Ph.D. thesis)

Further modifications

. lan Fenty + Arash Bigdeli: sea ice 1992- 2007 synthesis, using

a Green’s Function approach
(Menemenlis, et al., 20053;
Menemenlis, et al., 2008)

thermodynamic adjoints



ECCO-Arctic : A Green’s function approach

Arctic ice-ocean simulation with optimized model parameters:

Approach and assessment [Nguyen et al., 2011]

Given a model
x(t+1) = Ax(t) + Gu(t) = F(x(t),u(t))

a perturbation satisfies
F(x(t),u(t)+d) = F(x(t),u(t)) + Gd

d:

Atmospheric forcings (JRA-55)

Initial conditions (WOA09)

Ocean albedo

Sea ice albedos

Seaice strength + lead closing params
Air-sea ice drag coefficient

Seaice

Vertical mixing parameter (5.4 107 m?/s)
River runoff contribution

(salt plume parameterization
[Nguyen et al. 2009] )

(10° km?)
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ECCO-Arctic: adjoint method

Arctic Subpolar gyre sTate Estimate (ASTE)
4750N Depth [km]
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Arctic Subpolar gyre sTate Estimate (ASTE) — Release 1

* Mean & time-varying ocean & sea ice states
* Arctic — Subpolar gyre exchange 47 50N  Depthikml

* Optimization period2017 / I5ooo

- 14000

@al conditions: deStEd 90x90 grid points
- WOA14 spin-up (0cean), ="
- PSC spin-up (ice) V \

3000

2000

1000

* Forcing: adjusted JRASGE
* OBCs: ECCO-v4

~—_ SSs = F g
* Control variables: LT — - \32.5°8
_ initial Conditions 1°grid: 30 60 90 120

- time-varying atmospheric state,
- 3-D ocean mixing parameters



ASTE atmospheric forcing

Temperature bias in the high latitudes in ERA-interim:

“ERA-Interim shows a widespread warm bias in Antarctica in every season,
ranging from +3 to +6°C” , Fréville, et al. (2014) The Cryosphere, 8, 13611373, d0i:10.5194/tc-8-1361-2014.

““ERA40 air is warmer in polar regions of both hemispheres, especially in the

north where the temperature is about 1°C greater. This is particularly marked in
winter over ice where ERA40 locally shows seasonal excess of temperature up

to OC” Brodeau et al., (2009) Ocean Modelling, 31, 88-104, doi: 10.1016/j.0cemo0d.2009.10.005
’ g

Beesley, et al., (2000), Lupkes et al. (2010), Jakobson et al. (2012)

Nguyen et al. 2011: JRA55 is “best” in the Arctic



ASTE atmospheric forcing
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ASTE initial conditions

Temperature
(°Q)

ECCOvV4R3 2002--2015; z=257m




ASTE - sensitivity between data and model control space

2007/Jun/09, ITP Profile#5260

Initial conditions: 2002 -600 t
What data are available?
-700
-800 : : '
-3 -2 -1 0 1



ASTE - sensitivity between data and model control space

Appropriate physics? ill-behaved parameter? (vertical mixing)
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Recasting vertical mixing coefficient into log1o framework
(Bigdeli et al., 2019, in prep, need to check code in ©).



cut off 15\%

SIextent ,

Arctic Subpolar gyre sTate Estimate (ASTE) — Release 1

180°W

* Arctic ocean-sea ice state representation:
- Sea ice state
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ASTE — hydrographic improvements

Improved sea ice edge yields
improved hydrography:

lterO:

- excessive sea ice

- SST near Tfeeze

- SSS too fresh due to
excessive melt where
ice edge meets
recirculated AW
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Depth [m]

ASTE — Release 1

* Arctic ocean representation:
- Arctic gateway transports
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normalized cost

ASTE — watermass representation

15-Jul-2010

Dense flow,
rho>1026.0 kg/m3
Alaska T<-1.7°C
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2. Watermass

production &
transformation

movie

Q-)nada

Greenland

12-Mar-2012

Alaska

Norway



Arctic Subpolar gyre sTate Estimate (ASTE) — Release 1.5

* Arctic ocean representation:
- watermass transformation (pkg/layers , budget closed)

6 | Barents Sea, Jan/2015 |

e hor+ver adv

% s hor dif f
i m—E ver diff
\ ; T~ S surf
2 /&" e, obcs
! . \

—tond

Watermass volume transformation rate [Sv]

Temperafu_l'e [°C]

Nguyen et al., 2019, in prep, ASTE



Applications [ Users

* Arctic physical oceanography (WHOI, UAF, UW, URI)

* Arctic ocean-sea ice system changes (WHOI, UAF)

* Arctic — SubArctic exchange (WHOI, John Hopkins)

* Acoustic wave propagation (URI, NERSC, ARL-UT)

* Forcings and initializations (UT-Austin, NERSC)

* Coupled ASTE-BioGeoChemistry (Columbia)

* Budget analyses (UW, MIT)

* Adjoint sensitivity studies — identification of dominant control
mechanism (John Hopkins, UT-Austin, UW)

* Arctic Observing System (Simulation) experiment (UW, WHOI)

* Arctic [ Nordic Seas observing system assessment (U. Bergen)

* Arctic sea ice prediction skills (UAF, UT-Austin)



Sea ice thermodynamic adjoint

Heimbach et al, 2010
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Sea ice thermodynamic adjoint

Fenty and Heimbach, [2013a,b] 7 04/01

L T

Hydrographic pre-conditioning:
facilitate the advancement of sea
ice in the marginal ice zone
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Sea ice thermodynamic adjoint

Fenty & Heimbach [2013b] 15000y -

R 10000t ]
e (QOcean-seaice state

estimate (1-yr, 96/97) of the 5000
Baffin Bay + Labrador Sea

* Energy and buoyancy
budgets in the marginal ice
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Time-varying surface air temperature adjustment [deg C]
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1. Role of sea ice advection : i
2. Role of ocean advection b
. Role of upper-ocean =
hydrography )

4. seaice-ocean feedbacks i

dencies are presented as (a) thermodynamic. (b) advective terms. and (c) and their sum. Solid lines denote each the maximum sea ice
extent during quasi-equilibrium

Ice Thickness Tendency (cnvdav)



Sea ice thermodynamic adjoint

Fenty et al., [2015] Global 18-km cubed-sphere 2004 state estimate
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Sea ice thermodynamic adjoint

Bigdeli et al., 2019 [in prep] :

* using mini-ASTE

* mechanism controlling sea
ice volume in the Western
Arctic marginal ice zone

* Testing linearity assumption

J=ice volume in box

fvh/?_

iy "

0.
g
foe

2J/dSSS <\ 1oJldSST =
1mo la a2 < 1mola :

7 J 58S {k ‘ ’g d
P e iy
Wi, | i,
oJ/dSSS . AJ/dSST -
12mo lag & 12mo lag &/‘.




Gas exchange at air-ocean interface in presence of sea ice

Bigdeli et al., 2017, 2018, 2019 [in prep], Ph.D. thesis

Arctic 36km, gkm, 11c4320 (forward, using Nguyen et al., 2011 optimized parameters),
1-D column: adjoint method to optimized initial T/S conditions
—> Gas exchange rate parameterization
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Figure 1. A graphic illustration of two possible back trajectories for Optimized
a single sampling station.
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Sub-grid scale plume modeling

Habbal et al., [in prep]

— Aiming to capture enhanced melting of glaciers and freshwater production due to
entrainment of warm water into buoyant plume at depth that is driven by subglacial
freshwater discharge without resolving the scales of the glacier and fjord system in

MITgcm

Approach: Use thermodynamic equations combined with buoyant plume theory to calculate

enhanced melt-rates of glaciers (for ice-sheet models) and introduce enhanced freshwater
production at neutrally-buoyant depth into MITgcm grid

Sub-gridscale Plume Model

MITgcem Grid Scale
l A
| 1 |
Ice Front
Glacier
Enhanced
Glacial melting MITgcm
_______________________ Ocean
Buoyant PrOpertieS
Plume
(T.9) Bathymetr
Plume yin
\ turbulgnce ....................... MITgcm
entrains Sill depth
Subglacial

discharge

across

ocean
forcing
(T.S)



Adjoint sensitivity

Investigation of the Mechanisms Controlling the
Bering Strait throughflow variability,

Nguyen et al. [2019] in prep. ]

Bering Strait

Chirikov Basin

Bering Strait:

- Connection to the Pacific Ocean

- Freshwater, heat, nutrients inputs
- marginal ice zone, shallow shelves

Pacilic Ocean
—> impact ecosystem (a) "0~
—> Arctic Ocean stratification
- further downstream: freshwater 1 [T . ,
: J(t) = = u(t') -n dA dt
to the Atlantic ocean T Ji—rs2 Ja
Mechanism controlling transport: 0.4 = g,’-t'F G
- “thought” to be due to ASSH Pac-Atl st =g el g G0
> Y OJTg y +'2g 48mo
and local winds £ | Sl Jy 4P
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Adjoint sensitivity

Investigation of the Mechanisms Controlling the Bering Strait throughflow
variability, Nguyen et al. [2019] in prep.
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Observing system simulation experiment (OSSE)

—>»| GPS

Impact of Synthetic Arctic Argo-type floats in a Coupled l

Ocean-Sea Ice State Estimation Framework,
Nguyen et al., [2017, 2019 in preps]
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Observing system simulation experiment (OSSE)

ASTE time-mean
Trajectory: AN A/position vector

U= N(Um(x), Gu)

Errorin T or S (generalized as Q)

Q(x(t) - 0x(1) )

€ =
A —

Upper 100m: conditions change quickly
—> Small error in x(t) yields e, > 10 5

Below 100m: conditions change less
quickly in addition to large 6
- ey < 190 in seasonal ice zones




Ocean observing system design (Nora Loose)

@ Ocean observing systems are expensive to build and maintain.
@ But: We need long-term and sustained ocean observations!

Example: The OSNAP array

@ launched in 2014

@ relies on short-term funding
(as many observational
efforts)

@ designed to monitor /ocal

| subpolar overturning and
Flgure http: //WWW.O—Snap.Org transports

\

\
The OSNAP Array

Key questions:
@ What information is contained in already existing observing
systems, such as OSNAP, also away from the instruments?
@ How can we build a long-term, cost-efficient Atlantic observing
system?




Adjoint sensitivities reveal mechanisms & pathways

Wind stress (1) sensitivity of

observed unobserved
OSNAP-East heat transport Nordic Seas heat content

|

— Y
are shared e%

pathways %y,

o o) 00
20°W 20°w

1, [2': Pressure anomalies communicated via coastal boundaries

OSNAP contains information about remote & unobserved quan-
tities, due to shared dynamical mechanisms and pathways.




How to quantify this?
Via Uncertainty Quantification within the ECCO state estimate!

J “‘“ ::. _
Yuw;at; _

control space

informed components of control space =
eigenvectors of Hessian = adjoint sen-
sitivities of observations (from previous
slide)

The details are in Nora’s PhD Thesis (to be submitted tomorrow!):
Loose, Nora, (2019). Adjoint Modeling and Observing System Design in the
Subpolar North Atlantic. PhD dissertation, University of Bergen.




High resolution, Tides

ASTE: use as initial and boundary conditions for higher
resolution regional models

llc540 ASTE (Helen Pillar, adjoint method)
-improve circulation and watermass representation in the
North Atlantic, Nordic, and Labrador Seas

llct080 (Green’s function)
- 90 vertical levels, with and without tides,
- investigate near inertial and tidal feedback on seaice



Some thoughts

Arctic system changes: local and global impact
- ecosystem, food supply
- transports
- oil drilling

In order to assess/understand changes:
- need to understand circulation and dynamics of the system

Arctic ocean: still highly under-observed
—> a difficult state estimation problem

ECCO-related efforts:
—> the time-mean and variability of the ocean-sea ice states
—> adjoint tools: allows for studies of attribution
- informing/optimizing observation networks



2. Arctic Ocean Circulation

movie




