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The Green of Green’s Functions (Challis & Shear, Physics Today, 2003)

Green’s 
mill, near 
Nottingham, 
England

In 1828, an English miller from Nottingham published a 
mathematical essay that generated little response. George Green’s 
analysis, however, has since found applications in areas ranging 
from classical electrostatics to modern quantum field theory.

Bromley House, circa 1880, 
the location of the Nottingham 
Subscription Library.



Green’s Functions for linear differential equations

Let L be an arbitrary linear differential operator.

A Green's function, G(x,y), is defined as the impulse response
of this linear operator, that is:

LG(x,y) = δ(x – y),

where δ(x–y) is the Dirac delta function applied at location y.

By linear superposition, Green’s functions can be used to solve a 
differential equation with arbitrary forcing term, Lu(x) = f(x).

The solution is the convolution: u(x) = ∫ G(x,y) f(y) dy.



Model Green’s Functions estimation approach

GCM: A General Circulation Model can be represented by a set of rules 
for time stepping a state vector x(ti) one time step in the future:

x(ti+1)  =  M(x(ti),h)
where M represents the known time stepping rules and vector h
represents perturbations to a set of model parameters.  Vector h is 
assumed to be a noise process with zero mean and covariance matrix Q.
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GCM: A General Circulation Model can be represented by a set of rules 
for time stepping a state vector x(ti) one time step in the future:

x(ti+1)  =  M(x(ti),h)
where M represents the known time stepping rules and vector h
represents perturbations to a set of model parameters.  Vector h is 
assumed to be a noise process with zero mean and covariance matrix Q.

Data:  The state estimation problem aims to estimate parameters h given 
a set of observations:

y =  H(x) + e
where H is the measurement function, and residual e is a noise process 
assumed to have zero mean and covariance matrix R.  For the Green’s 
function approach, the data equation is rewritten:

y =  G(h) + e
where G is the convolution of measurement function H with GCM 
dynamics M.



Model Green’s Functions estimation approach

Cost function: Control parameters h can be estimated by minimizing 
a quadratic cost function:

J =  hTQ-1h + eTR-1e

where superscript T is the transpose operator and superscript –1 denotes 
a matrix inversion.



Model Green’s Functions estimation approach

Cost function: Control parameters h can be estimated by minimizing 
a quadratic cost function:

J =  hTQ-1h + eTR-1e
where superscript T is the transpose operator and superscript –1 denotes 
a matrix inversion.

Linearization:  To minimize this cost function, the GCM and data 
equations are linearized about a baseline simulation xb (h = 0).
For “small” perturbations:

G(h)  ≈ G(0) + Gh
where matrix G is an n×p matrix, n is the dimension of observation 
vector y, and p is the dimension of parameter vector h.  Matrix G can be 
determined by performing a series of GCM sensitivity experiments.  
Specifically, each column of matrix G is obtained by perturbing the 
corresponding element in parameter vector h and then carrying out a 
GCM integration over the estimation period.



Model Green’s Functions estimation approach

Minimization: The minimization of cost function J subject to the 
linearized model-data constraints has solution:

ha =  PGTR-1yd
where yd is the model-data residual, that is, yd ≡ y – G(0), and P is the 
uncertainty covariance matrix:

P  = ( Q-1 + GTR-1G )–1



Model Green’s Functions estimation approach

Minimization: The minimization of cost function J subject to the 
linearized model-data constraints has solution:

ha =  PGTR-1yd
where yd is the model-data residual, that is, yd ≡ yo – G(0), and P is the 
uncertainty covariance matrix:

P  = ( Q-1 + GTR-1G )–1

Solution: The optimized solution xa is:

xa = xb + (GTR-1G)-1 R-1yd

where xb = M(x,h= 0) is from the baseline simulation and it is assumend
that there is no prior information about control parameters, i.e., Q-1 ≈ 0.

If linearization assumption holds, we will have: xa ≈ M(x,ha).



Taken from: C. Wunsch, in "A Celebration in Geophysics and Oceanography 1982.
In Honor of Walter Munk on his 65th birthday."

State estimation: Formally combining the two 
knowledge reservoirs (an early vision, ca. 1982)

W. Munk C. Wunsch



Example application:
Large-Scale Circulation of the Pacific Ocean from Satellite Altimetry
(Stammer and Wunsch, 1996)
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Figure ld,e. (d) Coarse 100 by 100 grid, on which the 
Green's functions where calculated in layers i through 
3. (e) Owing to geographical shoaling, the bottom layer 
has a smaller geographical extent on the coarse grid. 

and the momentum flux is given by the wind stress 
[oqz(u,v) • rx'•], with ,•, ½ being longitude and lat- 
itude, respectively. Surface heat and freshwater (salt) 
fluxes are mimicked by Newtonjan damping terms, with 
the model t• and S fields relaxed toward Levitus's an- 

nual mean surface tILev, SLe v fields as H• - 7(tiLe v 
and Hs -'(SLe v -S) with timescale 

Because our main intention here is the exploration of 
the method in the context of real data, a limited model 
resolution is adopted, with a 10 horizontal grid spac- 
ing and with only four layers in the vertical of thickness 
100, 500, 1000, and 2400 m (from top to bottom). The 
maximum model depth is 4000 m. The southern wall 
and the Indonesian passages are artificially closed for 
this specific realization. Although this configuration is 
somewhat limiting in providing a highly realistic model 
of the circulation of the Pacific, it significantly simpli- 
fies the situation without changing the fundamental na- 

ture of the problem. In future applications, the resolu- 
tion will be increased substantially, and ultimately, the 
model will have a global domain. 

Starting from Levitus's [1982] annual mean t) and $ 
distributions and a resting flow field, the model was in- 
tegrated forward for about 18 years (160,000 time steps) 
with a mean surface wind stress provided by Tvenbevth 
et al. [1989] from routine analysis of the European Cen- 
tre for Medium-Range Weather Forecasts (ECMWF) on 
a 2.50 x 2.50 grid and averaged over the period 1980 to 
1986. The time step At was i hour, and parameters 
for mixing and diffusion were used as listed in Table 1. 
Owing to the relatively strong surface T and S forcing 
and its damping effects on the surface pressure Green's 
functions (see below), the relaxation time scale 7-! was 
increased from its initial 30 days to 100 days, and the 
model was integrated forward another 4.5 years (40,000 
time steps), giving a total of roughly 23 years of spin-up. 

The surface pressure and velocity fields at the end 
of the 23-year spin-up are shown in Figure lb. The re- 
lated surface temperature field is shown in Figure lc. In 
the North Pacific, the major circulation components are 
simulated. However, because of the low vertical resolu- 
tion, there is not much resemblance to observations in 
the tropics, and the circulation south of the equator is 
dominated by the artificially closed southern boundary. 

3. Methodology 

The estimation procedure introduced below is for- 
mulated for observed model/data differences in surface 
pressure. Our goal is to describe those differences as 
a solution to linear model dynamics in terms of model 
Green's functions, using all observations available dur- 
ing a period r. As explained below in detail, the result 
is a linear inverse problem for a set of disturbance coeffi- 
cients, which is then solved. Generally, the linear model 
can be set up on the full OGCM grid. (To avoid ambi- 
guity, the original model will henceforth be referred to 
as the "OGCM.") However, consistent with the scale ar- 
gument given in the introduction, the linear estimation 
problem is defined on a coarse grid, obtained by dividing 
the ocean into a series of three-dimensional rectangular 
boxes of horizontal scale L - 100 with spatial cover- 
age as shown in Figure l d. A stack of such coarse grid 
boxes occupies the whole water column with vertical 

Table 1. Model Parameters 

Parameter Symbol Value 
Resolution 

Horizontal 
Vertical Az 

Maximum depth H0 
Time step At 
Relaxation coefficient A-• 
Horizontal mixing Ahm 
Vertical mixing Avm 
Horizontal diffusion Ahh 
Vertical diffusion Avh 

1 ø 
100, 500, 1000, 2400 m 
4000 m 
1 hour 

30/100 days 
104 m •' s -• 
10 -2 m •' s -• 
10 ? m •- s-• 
0.5 x 10 -4 m •' s -• 

18,428 STAMMER AND WUNSCH: PACIFIC CIRCULATION FROM ALTIMETRY 

-500 

- • 000 

•-•5oo 

-2000 

-2500 

-500 

•--1500 

-2000 

-2500 

Latitude 

b 

Figure 22. Meridional sections of temperature along (a) 165øE and (b) 215øE showing the 
temperature field before (dashed line) and after correction (solid line) by the T/P data. Contour 
increment is 5 øC. 

content of the ocean through the seasons. Temperature 
changes of dose to iøC are found in the surface layer. 
Those values are fairly small and should not be con- 
fused with observed surface temperature fluctuations, 
since they represent vertical integrals over the top 100 
m. A simple calculation leads to an associated steric 
height change in sea level 

,5(, - -•'o a,50dz (28) 
100 

by •, - 2 C m, consistent with the estimated am- 

plitudes. On the other hand, seasonal temperature 
changes of the order of 0.1øK at 1000 m depth and 
below are artificially large. The relatively low verti- 
cal OGCM resolution enhances the vertical extent of 
responses to surface forcing and exaggerates tempera- 
ture fluctuations in the main thermocline. (Recall the 
vertical resolution discussion in the twin experiments.) 

We claim, then, that the model/data combination 
produces a better estimate of the seasonal cycle than 
either can do alone. The reader may, however, object 
that models such as the GFDL OGCM used here, are 
notoriously unable to properly compute the annual cy- 
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Figure 23. Estimates of seasonal surface elevation anomalies relative to the 1-year mean and 
related geostrophic currents. Fields represent (a)spring, (b), summer, (c) fall, and (d) winter, 
with spring starting at the beginning of March. Positive and negative values are drawn by bold, 
and thin lines, respectively. Contour increment is 1 cm. The reference vector represent 4 cm/s. 



Example application:
Linearization of an Oceanic General Circulation Model for Data 
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FIG. 9. Response of the four-level GFDL model to a 0.058C perturbation, between 100- and
600-m depth, at the end of month 16. A two-dimensional low-pass spatial filter with cutoff
wavelength of 168 has been applied to smooth scales not resolved by the reduced-order linear
model. The heavy dot indicates the initial location of the disturbance.

6. Linearization
Two methods for deriving the state transition matrix,

A in (3), are discussed below. The first method is based
on the computation of model Green’s functions and it
is related to the method used by Fukumori and Malan-
otte-Rizzoli (1995). Model Green’s functions are defined
here as the GCM response to unit temperature pertur-
bations of the reduced state vector x(t). These pertur-
bations are introduced in the numerical model as
ByBhx(t). The response of the GCM is computed as in
section 4 for a single time step, dt equals 1 month, of
the linear model. The GCM response is then projected
back onto the reduced state vector using B* and the
resulting vector gives the column of the state transition
matrix corresponding to the perturbed element of x(t).
This computation, repeated for each element of x(t),
provides the complete state transition matrix.
For illustration, the above method is used to obtain

a state transition matrix for the North Pacific GFDL
integration of Stammer and Wunsch (1996) (see section
3b for a brief description of model configuration). Three
hundred thirty-six 30-day Green’s functions are com-
puted at the locations marked by the dots in Fig. 9 and
used to define the state-transition matrix A. Figure 9
also displays the response of the GFDL model to a
0.058C perturbation in the second model layer at the
end of month 16. The large-scale response of the GFDL

model can be compared to that of the linear model in
Fig. 10. The excellent correspondence between Figs. 9
and 10 indicates that the linear model A is able to sat-
isfactorily reproduce the large-scale response of the ful-
ly nonlinear GCM. This result needs to be tested in
eddy-resolving model configurations, but for sufficient-
ly small perturbations, we expect this result to carry
over to higher model resolutions.
A second method for obtaining A is related to the

computation of principal oscillation patterns (e.g., von
Storch 1993). Consider the response of a numerical
model to some random initial perturbation field. This
response, filtered by B*, provides a time series of the
reduced state vector x(t), which is consistent with GCM
perturbation dynamics. Right multiplication of (3) by
xT(t) and taking expectations yields the state transition
matrix

A 5 ^x(t 1 dt)xT(t)&^x(t)xT(t)&21, (19)

where it is assumed that x(t) and q(t) are uncorrelated.
This method has the advantage of being able to provide
an average linear model for the entire period under study
rather than an exact model for a particular month.
When the covariance matrix ^x(t)xT(t)& is not invert-

ible—for example, when the number of time steps avail-
able for extracting the linear model is smaller than the
dimension of x(t)—the following inverse problem,
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Example application:
Linearization of an Oceanic General Circulation Model for Data 
Assimilation and Climate Studies (Menemenlis and Wunsch, 1997)
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TABLE 1. Description and definition of estimation matrices.

Name Description Definition

A
B*
B
E
P
Q
R
S

Linear model
State reduction
Interpolation
Measurement model
Uncertainty matrix
System error
Measurement error
State covariance

x(t 1 dt) 5 Ax(t) 1 q(t)
x(t) 5 B*[j (t) 2 (t)]ĵ
B*B 5 I, BB* ± I
y(t) 5 EBx(t) 1 n(t)
P 5 ^(x̂ 2 x)(x̂ 2 x)T&
Q 5 ^qqT&
R 5 ^nnT&
S 5 ^xxT&

The validity of this assumption for the North Pacific is
tested in sections 4 and 6 using the MIT and the GFDL
models.
Most measurements can be represented as some linear

combination of the state vector j(t) plus noise n(t);
h(t) 5 E(t)j(t) 1 n(t). (8)

Typically, matrix E is sparse with only a few nonzero
elements corresponding to the measurement locations.
As discussed in section 7, ocean acoustic tomography
and satellite altimetry provide path and depth-integrated
information, respectively. In the current discussion, it
is convenient to define the observed difference between
the measurements and the GCM prediction:

ˆy(t) 5 h(t) 2 E(t)j(t) (9)
5 E(t)Bx(t) 1 n(t). (10)

In (10), the observed difference y(t) is expressed in
terms of the reduced state x(t). The noise term n(t) now
includes a term due to small-scale, high-frequency vari-
ability e(t) in the null space of B, as well as measurement
error n(t) from (8);

n(t) 5 E(t)e(t) 1 n(t). (11)
In practice, n(t) is often negligible relative to the sam-
pling error E(t)e(t) in (11). It should be pointed out that
in an analogous manner, n(t) contains a contribution due
to the unresolved scales and missing physics of the
GCM.
The problem consists in solving for x̂(t), the reduced

state estimate, and its uncertainty, P 5 ^(x̂ 2 x)(x̂ 2
x)T&, given measurements y(t) and a priori covariance
matrices Q 5 ^qqT&, R 5 ^nnT&, and S 5 ^xxT&. The
caret indicates an estimate, the angle brackets represent
an ensemble average, and superscript T is the transpose
operator. Solutions for the above problem are readily
available in the literature. The real challenge lies in
defining matrices A, B*, E, Q, R, and S (see Table 1).
This study pertains to the definition of A and B*, the
linear model, and the state reduction operator, respec-
tively. The consequences of using wrong a priori Q, R,
and S are explored in section 7.

3. Model description
The current study was initiated using the GFDL nu-

merical code and model output from a global eddy-

resolving integration by Semtner and Chervin (1992).
These results are reported in sections 6 and 7. We have
now switched over to the newly developed MIT GCM.
This model is used to carry out the perturbation analysis
reported in section 4 and will be the focus of our future
assimilation efforts. The above models and their con-
figurations are briefly described below.

a. MIT model

In its current configuration, the MIT GCM (Marshall
et al. 1997a,b) solves the incompressible Navier–Stokes
equations in spherical geometry, has a rigid lid, and
employs an equation of state appropriate to sea water.
Height is used as a vertical coordinate, and the model
can handle arbitrarily complex coastlines, islands, and
bathymetry. The model relaxes the hydrostatic approx-
imation but retains a ‘‘hydrostatic switch’’ that, if de-
sired, turns off nonhydrostatic terms for use in large-
scale modeling. It is prognostic in three components of
velocity, temperature, and salinity and diagnostic in
pressure. A finite volume, predictor–corrector numerical
procedure is used on a staggered (Arakawa ‘‘C’’) grid.
The model is implemented on parallel machines.
For this study, the MIT GCM is integrated in hydro-

static mode for the Pacific Ocean. It has realistic coast-
lines and bottom topography (Fig. 2). Bottom and side
walls are insulating. A no-slip side wall condition is
imposed and the bottom is free slip. The model domain
extends from 308S to 618N, meridionally, and from 1238
to 2928E, zonally, with horizontal grid spacing of 18.
There are 20 vertical levels (see Table 2), to a maximum
depth of 5302 m. At the surface, the model is relaxed
to climatological values of temperature and salinity with
a relaxation timescale of 25 days. At the southern
boundary, the relaxation occurs over a 500-km zone
with a timescale of 5 days at the boundary decreasing
linearly to 100 days at 500 km.
The model was initialized from climatological annual

mean temperature and salinity distributions (Levitus
1982), and a resting flow field. It was integrated for 17
years with annual mean temperature, salinity, and sur-
face wind forcing. From year 18 onward, monthly tem-
peratures and seasonal salinities were used, and the sur-
face was forced with the monthly winds provided by
Trenberth et al. (1989). The forcing fields were updated
every 24 h using linear interpolation from the monthly
or seasonal values. Surface heat and freshwater fluxes
from Oberhuber (1988) were introduced in the surface
layer starting on year 29, while continuing to relax to
climatological temperature and salinity. The model time
step is 1 h. Table 3 lists the mixing and diffusion co-
efficients.
Figure 3 displays the pressure and velocity fields at

the 38-m depth, after 43 years of integration. The major
climatological circulation components of the North Pa-
cific can be recognized (compare to Pickard and Emery
1990, Fig. 7.31). They include the Kuroshio and the
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Name Description Definition

A
B*
B
E
P
Q
R
S

Linear model
State reduction
Interpolation
Measurement model
Uncertainty matrix
System error
Measurement error
State covariance

x(t 1 dt) 5 Ax(t) 1 q(t)
x(t) 5 B*[j (t) 2 (t)]ĵ
B*B 5 I, BB* ± I
y(t) 5 EBx(t) 1 n(t)
P 5 ^(x̂ 2 x)(x̂ 2 x)T&
Q 5 ^qqT&
R 5 ^nnT&
S 5 ^xxT&

The validity of this assumption for the North Pacific is
tested in sections 4 and 6 using the MIT and the GFDL
models.
Most measurements can be represented as some linear

combination of the state vector j(t) plus noise n(t);
h(t) 5 E(t)j(t) 1 n(t). (8)

Typically, matrix E is sparse with only a few nonzero
elements corresponding to the measurement locations.
As discussed in section 7, ocean acoustic tomography
and satellite altimetry provide path and depth-integrated
information, respectively. In the current discussion, it
is convenient to define the observed difference between
the measurements and the GCM prediction:

ˆy(t) 5 h(t) 2 E(t)j(t) (9)
5 E(t)Bx(t) 1 n(t). (10)

In (10), the observed difference y(t) is expressed in
terms of the reduced state x(t). The noise term n(t) now
includes a term due to small-scale, high-frequency vari-
ability e(t) in the null space of B, as well as measurement
error n(t) from (8);

n(t) 5 E(t)e(t) 1 n(t). (11)
In practice, n(t) is often negligible relative to the sam-
pling error E(t)e(t) in (11). It should be pointed out that
in an analogous manner, n(t) contains a contribution due
to the unresolved scales and missing physics of the
GCM.
The problem consists in solving for x̂(t), the reduced

state estimate, and its uncertainty, P 5 ^(x̂ 2 x)(x̂ 2
x)T&, given measurements y(t) and a priori covariance
matrices Q 5 ^qqT&, R 5 ^nnT&, and S 5 ^xxT&. The
caret indicates an estimate, the angle brackets represent
an ensemble average, and superscript T is the transpose
operator. Solutions for the above problem are readily
available in the literature. The real challenge lies in
defining matrices A, B*, E, Q, R, and S (see Table 1).
This study pertains to the definition of A and B*, the
linear model, and the state reduction operator, respec-
tively. The consequences of using wrong a priori Q, R,
and S are explored in section 7.

3. Model description
The current study was initiated using the GFDL nu-

merical code and model output from a global eddy-

resolving integration by Semtner and Chervin (1992).
These results are reported in sections 6 and 7. We have
now switched over to the newly developed MIT GCM.
This model is used to carry out the perturbation analysis
reported in section 4 and will be the focus of our future
assimilation efforts. The above models and their con-
figurations are briefly described below.

a. MIT model

In its current configuration, the MIT GCM (Marshall
et al. 1997a,b) solves the incompressible Navier–Stokes
equations in spherical geometry, has a rigid lid, and
employs an equation of state appropriate to sea water.
Height is used as a vertical coordinate, and the model
can handle arbitrarily complex coastlines, islands, and
bathymetry. The model relaxes the hydrostatic approx-
imation but retains a ‘‘hydrostatic switch’’ that, if de-
sired, turns off nonhydrostatic terms for use in large-
scale modeling. It is prognostic in three components of
velocity, temperature, and salinity and diagnostic in
pressure. A finite volume, predictor–corrector numerical
procedure is used on a staggered (Arakawa ‘‘C’’) grid.
The model is implemented on parallel machines.
For this study, the MIT GCM is integrated in hydro-

static mode for the Pacific Ocean. It has realistic coast-
lines and bottom topography (Fig. 2). Bottom and side
walls are insulating. A no-slip side wall condition is
imposed and the bottom is free slip. The model domain
extends from 308S to 618N, meridionally, and from 1238
to 2928E, zonally, with horizontal grid spacing of 18.
There are 20 vertical levels (see Table 2), to a maximum
depth of 5302 m. At the surface, the model is relaxed
to climatological values of temperature and salinity with
a relaxation timescale of 25 days. At the southern
boundary, the relaxation occurs over a 500-km zone
with a timescale of 5 days at the boundary decreasing
linearly to 100 days at 500 km.
The model was initialized from climatological annual

mean temperature and salinity distributions (Levitus
1982), and a resting flow field. It was integrated for 17
years with annual mean temperature, salinity, and sur-
face wind forcing. From year 18 onward, monthly tem-
peratures and seasonal salinities were used, and the sur-
face was forced with the monthly winds provided by
Trenberth et al. (1989). The forcing fields were updated
every 24 h using linear interpolation from the monthly
or seasonal values. Surface heat and freshwater fluxes
from Oberhuber (1988) were introduced in the surface
layer starting on year 29, while continuing to relax to
climatological temperature and salinity. The model time
step is 1 h. Table 3 lists the mixing and diffusion co-
efficients.
Figure 3 displays the pressure and velocity fields at

the 38-m depth, after 43 years of integration. The major
climatological circulation components of the North Pa-
cific can be recognized (compare to Pickard and Emery
1990, Fig. 7.31). They include the Kuroshio and the
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v2). Vertical arrays permit the detailed study
of the received acoustic signals. The trans-

mission schedule typically consists of 4-day
periods, two to four times a month (9 ). Trans-

missions are spaced 4 hours apart during
transmission periods. A total of 772 transmis-
sions in 43 groups were made between De-
cember 1995 and March 1997 (10 ). A recog-
nizable one-to-one correspondence exists be-
tween the observed and predicted ray arrivals
(Fig. 2). This result and other work (11) show
that at these ranges, ray arrivals are resolv-
able, identifiable, and stable. Ray arrivals
were tracked and then used to infer range-
averaged profiles of sound speed and temper-
ature along each section (12 ). Despite the
presence of mesoscale eddies and internal
waves, the arrival times vary smoothly
through the months as a result of the spatial
integration.

The vertical resolving power of the
acoustic data is determined by the ray
structure. For sections k and l, all identified
rays are steep and surface reflecting and
have lower turning depths between 2000
and 3500 m. For sections n and o, identifi-
able rays begin as surface reflecting near
the source and change to near-surface re-
fracting as they approach the receivers.
Section v1 has both surface-reflecting and
purely refracting rays.

The travel times for section k (Fig. 2), and
with one exception, all other sections, de-
creased in the summer and increased in the
winter, consistent with the expected seasonal
heating and cooling of the surface layer. For
section v1, the situation was different: max-
imum heat content was recorded in March
1996. From a comparison of sections o and
v1 (Fig. 3), we infer that the winter surface
layer cooling near the source, where the two
sections overlap, was more than offset by a
subsurface warming near receiver v1, where
the rays do not sample the surface layer.

Altimetric component. The TOPEX/PO-
SEIDON altimeter (13 ), in a 10-day repeating
orbit, produces precise and accurate measure-
ments of the sea surface topography (Fig. 1).
Sea surface topography can be used to deter-
mine motions that extend deep into the oce-
anic interior (14 ), but its structure reflects a
complex combination of many different physi-
cal processes, barotropic and baroclinic. Other
data, such as acoustic or expendable tempera-
ture profiler (XBT) data, and theory [including
general circulation models (GCMs)] are used to
separate the various components by geography
and by space-time scales.

Direct temperature measurements. XBT
surveys from ships were conducted adjacent
to section v1 (Fig. 3). Such surveys provide a
direct measure of the heat content of the
upper ocean (!800 m). Repetition of the
surveys is, however, difficult to arrange. Cli-
matologies (15 ) (multidecadal averages of
historical data) are able to provide rough
estimates of the mean seasonal cycle of heat
and salinity changes.

Modeling component. Ocean GCMs are

Fig. 1. The ATOC acoustic array is superimposed on a map of the root-mean-square (rms) sea level
anomaly from 4 years ( January 1993 to December 1996) of TOPEX/POSEIDON altimetric mea-
surements. Red lines indicate the sections used in the present study and are referenced by letter
labels. Yellow lines show additional sections along which the acoustic propagation has been
observed, but for which the data were not used here. Data assimilation was carried out in the region
bounded by the outer white rectangle, and heat content estimates were obtained inside the inner
white rectangle. Much, but not all, of the elevation anomalies represent seasonal thermal changes
within the ocean, with the acoustic data providing a stable spatial average that is otherwise difficult
to obtain. The ATOC region, being on the eastern side of the ocean, shows comparatively weak
variability. Nevertheless, it is evident that the different acoustic sections will, during any 10-day
period, have potentially very different anomalies.

Fig. 2. Acoustic arrival
patterns for receivers
k and v1 at approxi-
mate ranges of 5000
and 3000 km, respec-
tively. Arrival patterns
are presented as “dot
plots,” where the dot
size is proportional to
the signal-to-noise ra-
tio. Predicted ray ar-
rivals (open circles)
were generated with a
climatology (15) and
then shifted in time to
optimize the compari-
son. Only the early ar-
rivals, corresponding
to steep rays, are
tracked (solid lines).
Rays propagating at
shallow angles arrive in quick succession and are more difficult to resolve. Receiver v1, a
40-element vertical line array, permits a cleaner reception than receiver k, which is a horizontal
array mounted on the sea floor.
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a representation of Newton’s laws of mo-
tion and thermodynamics for the fluid
ocean driven at the sea surface through
exchanges with the atmosphere of stress
(winds) and buoyancy fluxes (heat and
fresh water). We used a GCM constructed
for ATOC (16 ) that “predicts” the fields
observed by acoustic tomography and al-
timetry.

Comparison of the Data
Each of the measurement types—acoustic,
altimetric, and XBT—can be used to produce
an estimate of components of the sea level
anomaly, !acoust, !altim, and !XBT, respec-
tively, over all or part of the domain. The
available climate estimate, !clim, is restricted
to the mean seasonal cycle (15). Another
estimate, !GCM, comes from the GCM.

The altimetric and GCM records roughly
track the climatological annual cycle, albeit
with different amplitudes (Table 1) and with
obvious evidence of both higher frequency
and interannual variability. Acoustic results
also track !clim for all sections except v1, but
they do not exhibit the short period fluctua-
tions of !altim and !GCM. Differences be-
tween !altim and !acoust (2.4 cm rms) result
from salt and barotropic contributions to !
present in !altim, as well as from uncertainties
in the altimetric and acoustic estimates.

The amplitude of !acoust at the annual
period is, on average, half that of !altim.
Similarly !XBT, which is consistent with the
acoustic data during the overlapping period,
has an rms difference from !altim of 2.9 cm,
larger than the likely errors in the altimetric
(" 1 cm rms) and XBT (" 0.2 cm rms for the
800-m thermal contribution) measurements
(17 ). A small number of salinity measure-
ments along section v1 suggest a consider-
able (" 2 cm rms) salt contribution to ! on
seasonal to interannual time scales, especially
in the transition zone between the low-salin-
ity waters of the California Current and salt-
ier subtropical waters offshore.

Short-period fluctuations in !altim and
!GCM are primarily caused by wind-forced
barotropic Rossby waves. These waves are
not sensed either by the acoustic (18) or
temperature measurements. A study (19)
comparing XBT and altimetric data over a
period of 4 years along a trans-Pacific section
concluded that about 80% of the variance of
!altim and !XBT was coherent at wavelengths
of 500 to 3000 km, which could be interpret-
ed as implying a barotropic variance contri-
bution of about 20%.

Insufficient information exists to sepa-
rate fully the salt, thermal, and mass con-
tributions to the low-frequency sea level
anomaly from data alone (6 ), but a partial
estimate can be obtained from the GCM
prediction. Of the total GCM sea level vari-
ability in the ATOC region, 28% lies in the

barotropic mode at periods exceeding a few
months, and this serves as our a priori
estimate of low-frequency mass contribu-
tions to !altim. All estimates of sea level
variability are consistent if in this area 1/3
to 1/2 of the low-frequency variance is
contributed by processes not reflecting heat
content changes.

Model-Data Combinations
Because the observations and the model
produce independent estimates of the oce-
anic fluctuations with distinctly different
expected errors, we can attempt a statistical
best estimate of the oceanic state through
their formal combination (20). Let xocean(t)
represent the true oceanic state vector de-
fined as a set of physical quantities (typi-

cally velocity, temperature, salinity, and
surface pressure) on a three-dimensional
grid that, along with initial and boundary
conditions, provides sufficient information
to calculate the oceanic state one time step,
#t, in the future:

xocean(t $ #t) % L[xocean(t), u(t), q(t)]
(1)

Operator L represents the GCM (a lengthy
computer code), vector u(t) comprises known
elements of initial and boundary conditions,
and vector q(t) comprises unknown elements
of initial and boundary conditions, indetermi-
nate model parameters (for example, mixing
coefficients), and other errors in the physics
of the model. We assumed that the second
moment matrix, Q(t) % cov[q(t)], is at least
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Fig. 3. The range-averaged sea level anomaly along the acoustic sections inferred by several
independent methods: (i) thick black lines indicate the ATOC acoustic measurements converted to
equivalent sea surface height for comparison with the altimeter data, (ii) thin black lines are from
the TOPEX/POSEIDON altimeter data, (iii) dashed lines represent the climatological thermal
anomaly converted to sea surface height, (iv) blue lines are the GCM estimates, and (v) the asterisks
along section v1 are the XBT data. Uncertainties are indicated for the acoustic estimates: the
possible errors are largest along section v1 because the upper ocean variability is unresolved due
to a lack of surface-reflecting rays near the receiver.
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of 20 additional model sensitivity experiments. These
additional experiments are summarized in Table 4.
Note that these 20 new sensitivity experiments were
computed relative to the case-3 solution of the first
Green’s function optimization and that they include a
repeat of all six sensitivity experiments listed in Table 1.
The end result of this second optimization is a further
10% cost function reduction, as indicated in Table 5.
The resulting estimates of vertical mixing coefficients,
surface heat and freshwater fluxes, isopycnal diffusivity,
surface wind stress, and initial conditions are discussed
below, followed by an analysis of improvements in bias,
drift, and explained variance relative to earlier solu-
tions and to data.

a. Vertical mixing

Sensitivity experiments 1–4 in Table 4 pertain to the
representation of vertical mixing in the model. Notice
that the background vertical diffusivity, which had been
deemed a relatively robust estimate in the earlier dis-
cussion, remains unchanged with a value of (15.1 ! 0.1)
" 10#6 m2 s#2. This value is consistent with inferences
from microstructure and tracer studies (e.g., Kelley and
Van Scoy 1999, and references therein).

The estimate of background vertical viscosity is (18 !
3) " 10#6 m2 s#2, which is approximately 6 times
smaller than the value of 10#4 m2 s#2, which is often
used for ocean modeling (e.g., Large et al. 2001). A
possible explanation for this difference is that the op-
timal background vertical viscosity is strongly depen-
dent on the values of other model variables, in particu-
lar on the values of vertical and isopycnal diffusivity.

Two additional parameters of the Large et al. (1994)
KPP scheme, Ric and Ri0, have been estimated; Ric is
the critical bulk Richardson number, which sets the
depth of the oceanic boundary layer. The estimate of
0.354 ! 0.004 is 18% larger than the value suggested by
Large et al. (1994). This compensates, in part, for shal-
low boundary layers depths in the baseline integration
relative to the data; Ri0 is a threshold gradient Rich-
ardson number for shear instability vertical mixing,
which is especially important for equatorial dynamics.
The estimated value of 0.699 ! 0.008 is the same as that
suggested by Large et al. (1994).

b. Surface heat and freshwater fluxes

Experiments 5 and 6 are used to adjust the surface
salinity and temperature relaxation terms. The esti-
mates shown in Table 4 indicate that the baseline values
of the relaxation coefficients are too weak for salinity
and too strong for temperature. Figure 7 compares the
mean and standard deviation of the resulting estimates
of surface heat and freshwater fluxes with those from
the NCEP reanalysis. The corrections to the time-mean
surface fluxes are substantial, up to 100 W m#2 for heat
and 2 m yr#1 for freshwater, which are values compa-
rable to the time-mean fields themselves.

It is interesting to compare the estimated time-mean
surface flux corrections (Figs. 7b and 7f) to the esti-
mates obtained independently by Stammer et al. (2004,
their Fig. 3) using the adjoint method. Except for the
equatorial Pacific, the similarities of the two estimates
both in pattern and in magnitude are striking. The prin-
cipal differences between the two estimates occur near

TABLE 3. Optimized parameters for case 3 (Table 1) are compared to estimates for optimizations where one of the six parameters
is not used. The last row displays the cost function reduction in percent assuming that the problem is linear.

Parameter Case 3 Case 10 Case 11 Case 12 Case 13 Case 14 Case 15

Vertical diffusivity (10#6 m2 s#2) 15.4 — 15.0 15.2 16.4 15.5 16.9
Vertical viscosity (10#6 m2 s#2) 46 115 — 6 54 47 41
Isopycnal diffusivity (m2 s#2) 572 540 599 — 579 569 571
Time-mean wind stress 0.43 0.64 0.42 0.44 — 0.43 0.38
Initial temperature 0.11 0.23 0.10 0.08 0.13 — 0.42
Initial temperature and salt 0.72 0.90 0.72 0.71 0.69 0.76 —
Cost function reduction (%) 29.8 19.8 29.5 29.3 27.9 29.7 24.5

TABLE 4. List of sensitivity experiments and optimized parameters for the second Green’s function optimization. For experiment 6,
the optimized parameter is indicated as a factor multiplying the $Q/$T fields of Barnier et al. (1995).

Expt Parameter Baseline Optimized

1 Vertical diffusivity (10#6 m2 s#2) 5 15.1 ! 12
2 Vertical viscosity (10#6 m2 s#2) 100 17.7 ! 3.0
3 Ric, boundary layer depth 0.300 0.354 ! 0.004
4 Ri0, shear instability 0.700 0.699 ! 0.008
5 Salinity relaxation (days) 60 44.5 ! 1.2
6 Temperature relaxation ($Q/$T ) 1.000 1.630 ! .008

7–10 Isopycnal diffusivity (m2 s#2) 500 Linear combination
11–14 Surface wind stress NCEP/COADS Linear combination
15–20 Initial conditions SPINUP Linear combination
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are radically different from those that are used in the
baseline integration.

Because of coarse resolution, artificial northern
boundary conditions, and lack of an interactive sea ice
model, the present model configuration is not expected
to be very realistic at high latitudes. Therefore, for the
remainder of this article, we use the spatially varying
definition for the a priori error variance—that of case 3,
which downweighs the high latitudes.

b. Linear approximation

The fundamental assumption that underlies the
Green’s function approach is that the estimation prob-
lem can be linearized relative to the baseline integra-
tion. That is, the optimal solution can be obtained as a
linear combination of the baseline and sensitivity ex-
periments. The extent to which this assumption is valid
can be evaluated by comparing the optimal linear com-
bination of the baseline and sensitivity experiments
with a new model integration, which is carried out using
the optimized parameters.

Assuming linearity, the expected cost function reduc-
tion relative to the baseline integration is 30% for the
case-3 parameters, those of column 7 in Table 1. The
actual cost function reduction, when the case-3 param-
eters are used to carry out a new model integration, is
33%. This is 3% better than what would be expected
for a perfectly linear problem. While in general we do
not expect such substantial cost function reduction, this
preliminary optimization demonstrates that exact lin-
earity is not required for the Green’s function approach
to work and that the optimization of a small number of
carefully chosen parameters can have a large positive
impact on the solution.

On average, for the first Green’s function optimiza-
tion, the errors due to nonlinearity are approximately
25% of the assumed a priori errors in the data and in
the model; that is, the right-hand side of (10) is approxi-
mately 4 times larger than the left-hand side. Therefore
the linear approximation is satisfied and no further it-
erations are needed in order to optimize the six param-
eters listed in Table 1.

c. Linear dependence

Once the linear approximation has been validated,
the kernel matrix G, which is explicitly computed in the

Green’s function approach, can be used to ask many
interesting and important “what if” questions. This ca-
pability is a key advantage of the Green’s function ap-
proach. Below we use G to determine the consequences
of estimating the parameters of Table 1 one at a time,
to determine the relative contribution of each param-
eter to cost function reduction, and to infer the robust-
ness of the estimates that have been obtained.

Table 2 lists estimates from one-at-a-time optimiza-
tions and compares the results to those of case 3. The
table shows that the one-at-a-time estimates differ sub-
stantially from those of case 3. This is because the pa-
rameter estimates are linearly dependent on each
other. Therefore the parameters cannot be estimated
independently. Note that the largest impact on cost
function reduction comes first from the vertical diffu-
sivity parameter and second from the initial conditions.
This will be explained in sections 5f and 5g as resulting
primarily from reduction of drift in the upper pycno-
cline and from compensation of model bias accumu-
lated in that same region during model spinup.

To gauge the relative contribution of each parameter
to cost function reduction, additional optimizations are
carried out using only five out of the six possible pa-
rameters. The results of these optimizations are sum-
marized in Table 3. The table shows that by optimizing
only five of the six parameters, the cost function reduc-
tion ranges from 19.8% to 29.7% as compared to 29.8%
for case 3, in which all six parameters are optimized. In
order of decreasing importance for cost function reduc-
tion, the parameters are 1) vertical diffusivity, 2) initial
conditions, 3) time-mean wind stress, 4) isopycnal dif-
fusivity, and 5) vertical viscosity.

The optimizations summarized in Tables 2 and 3 can
also be used to gauge the likely impact of increasing the
number of control parameters, that is, the number of
degrees of freedom of the optimization. For example,
one may infer that the estimate of vertical diffusivity is
relatively robust since its range is limited: 15.0 ! 10"6

to 17.4 ! 10"6 m2 s"2. By comparison the estimate of
vertical viscosity is not very robust since it ranges from
6.0 ! 10"6 to 348 ! 10"6 m2 s"2.

5. A second Green’s function optimization
The encouraging results from the six-parameter op-

timization discussed above motivated the computation

TABLE 2. Optimized parameters for case 3 (Table 1) are compared to parameters estimated one at a time. The last row displays the
cost function reduction in percent assuming that the problem is linear. Because the parameter estimates are linearly dependent, the
one-at-a-time estimates differ substantially from those of case 3.

Parameter Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Vertical diffusivity (10"6 m2 s"2) 15.4 17.4 — — — — —
Vertical viscosity (10"6 m2 s"2) 46 — 348 — — — —
Isopycnal diffusivity (m2 s"2) 572 — — 399 — — —
Time-mean wind stress 0.43 — — — 0.72 — —
Initial temperature 0.11 — — — — 0.60 —
Initial temperature and salt 0.71 — — — — — 2.5
Cost function reduction (%) 29.8 19.4 0.58 0.14 5.42 6.46 14.2
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to data (see Figs. 12–15). The following methodology is
used to analyze the temperature data, which are sparse
and irregularly sampled in space and in time. The
model estimates are first sampled at the exact locations

and times of the temperature data. The temperature
data and the model estimates are then binned and ana-
lyzed in 20° zonal by 10° meridional grid cells. Global
averages are weighted by area and are obtained by av-
eraging the results of all grid cells that contain more
than 100 temperature samples.

Figure 12a shows that the Green’s function optimi-
zation has reduced the bias of the previous solutions
relative to data throughout the entire water column.
Notice that although the smoother solution corrects the
temporal variability, it nevertheless has a measurable
impact on the time-mean temperature profile.

The bias reduction of the Green’s function solution is
most significant at the base of the equatorial ther-
mocline as can be seen by comparing Figs. 13c and 13e.
To a large extent this is the result of vertical diffusivity
being too weak in the baseline and in the smoother
integrations, hence resulting in a thermocline that is too
sharp and too shallow relative to data.

Although the bias of the Green’s function solution
relative to data is decreased on a global average when
compared to earlier solutions, there are some regions
where the bias remains significant. One of these regions
is the Indian Ocean, which is too warm by about 1°C
in the Green’s function solution at 200-m depth. These
residual discrepancies contain information about re-

FIG. 12. Comparison of baseline integration (Base), smoother
solution (SM), and Green’s function solution (GF) to observed
temperature profiles: (a) global root-mean-square (rms) differ-
ence relative to data; (b) global rms drift relative to data; and (c)
percent explained variance of the baseline–data difference.

FIG. 13. Time-mean potential temperature, 1993–2000: (a) Green’s function estimate at the equator down to 500-m depth; (b) Green’s
function estimate at the 156-m depth; (c) smoother bias relative to data at the equator; (d) smoother bias relative to data at the 156-m
depth; (e) Green’s function bias relative to data at the equator; and (f) Green’s function bias relative to data at the 156-m depth. Units
are °C.
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maining model parameterization and boundary con-
dition errors. Therefore these discrepancies can guide
future model-parameterization improvements and/or
the selection of additional model sensitivity experi-
ments.

g. Drift

Given the large changes in 1991 initial conditions
relative to those obtained from model spinup, an im-
portant question is whether the bias reduction has

FIG. 15. Percent explained variance of the baseline-data residual for (a) sea surface height variability of the smoother solution, (b)
sea surface height variability of the Green’s function solution, (c) temperature variability at 156 m of the smoother solution, and (d)
temperature variability at 156 m of the Green’s function solution.

FIG. 14. Potential temperature trend, 1993–2000: (a) Green’s function estimate at the equator down to 500-m depth; (b) Green’s
function estimate at the 156-m depth; (c) smoother drift relative to data at the equator; (d) smoother drift relative to data at the 156-m
depth; (e) Green’s function drift relative to data at the equator; and (f) Green’s function drift relative to data at the 156-m depth. Units
are °C yr!1.
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earth’s rotation rate and ! is latitude; in the Tropics,
23°S to 23°N, | f | is set equal to 5.7 " 10# 5 s# 1 for this
computation. The third and fourth sensitivity experi-
ments are also spatially varying as per Holloway (1986)
but with exponentially decaying amplitude in the ver-
tical, exp(# z/500) and exp(# z/1000), respectively,
where z is the depth in meters.

Figures 8 and 9 display, respectively, a horizontal
map of estimated isopycnal diffusivity at 1000-m depth
and vertical profiles of minimum and maximum diffu-
sivity. The estimates range from 550 to 1350 m2 s# 2 and
straddle the value of 800 m2 s# 2 suggested by Large et
al. (1997) but are considerably lower than the 1500 to
4000 m2 s# 2 range that had been inferred by Holloway
(1986) using satellite altimeter data. In the vertical, the
estimates exhibit a 5%–35% decrease near the surface.
This is contrary to the a priori expectation that the
estimated isopycnal diffusivity coefficient would be
larger near the surface where the eddy kinetic energy is
higher. The estimated decrease in near-surface isopyc-
nal diffusivity is in addition to the Large et al. (1997)
surface-tapering scheme, which has also been applied in
this study.

d. Surface wind stress

Surface wind stress is estimated as a linear combina-
tion of four sensitivity experiments. The first two ex-
periments perturb the time-mean wind stress while pre-
serving the variability of the NCEP reanalysis. The next
two experiments perturb the time-variable wind stress.
Note that in the baseline integration, the time-mean
NCEP wind stress has already been replaced with a
time-mean wind stress derived from the COADS cli-
matology, as discussed in section 3a.

Specifically, the first sensitivity experiment, labeled
QSCAT, replaces the time-mean wind stress of the
baseline integration with a time-mean wind stress de-
rived from QuikSCAT data (W. Tang 2002, personal
communication). The second sensitivity experiment, la-
beled ERSMEAN, replaces the time-mean wind stress
with a wind product derived from European Remote
Sensing (ERS) satellites and obtained from the ERS
Processing and Archiving Facility (CERSAT) at the
French Research Institute for Exploration of the Sea
(IFREMER). The third sensitivity experiment, labeled

ERS, includes both the time mean and the time vari-
ability of the CERSAT wind product. Finally, the
fourth sensitivity experiment, labeled SM, replaces the
time-variable winds with those estimated by the ap-
proximate smoother described in section 3c.

The optimal surface wind stress estimate is

!$r, t% & !$r% ' !!$r, t%, $12%

where

!$r% & 0.55 COADS ' 0.56 ERSMEAN

# 0.11 QSCAT $13%

is the time-mean wind stress,

!!$r, t% & 1.02 SM ' 0.41 ERS # 0.43 NCEP $14%

is the time-variable wind stress, and r and t are space
and time coordinates, respectively. The wind stress es-
timates are compared to the NCEP reanalysis in Fig. 10.
The wind stress estimates can also be compared to
those obtained independently by Stammer et al. (2004;
Fig. 9) using the adjoint method. In the large scale, both
estimates show an increase in the trade winds over the
tropical Pacific and a weakening of the midlatitude
winds, especially above the Southern Ocean. In terms
of meridional wind stress changes, both estimates indi-
cate a smaller poleward component at latitudes higher
than 30°N. The principal differences between the two
estimates is that the adjoint-model solution contains
many small-scale wind stress corrections—especially in
western boundary current regions and above the Ant-
arctic Circumpolar Current—that are not present in the
Green’s function solution.

The estimated time variability of the surface wind
stress is very similar to that estimated by the smoother,
SM in (14). This is an indication of the consistency and

FIG. 8. Estimated isopycnal diffusivity in m2 s# 1 at the
1000-m depth.

FIG. 9. Vertical profile of estimated isopycnal diffusivity.
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is the time-variable wind stress, and r and t are space
and time coordinates, respectively. The wind stress es-
timates are compared to the NCEP reanalysis in Fig. 10.
The wind stress estimates can also be compared to
those obtained independently by Stammer et al. (2004;
Fig. 9) using the adjoint method. In the large scale, both
estimates show an increase in the trade winds over the
tropical Pacific and a weakening of the midlatitude
winds, especially above the Southern Ocean. In terms
of meridional wind stress changes, both estimates indi-
cate a smaller poleward component at latitudes higher
than 30°N. The principal differences between the two
estimates is that the adjoint-model solution contains
many small-scale wind stress corrections—especially in
western boundary current regions and above the Ant-
arctic Circumpolar Current—that are not present in the
Green’s function solution.

The estimated time variability of the surface wind
stress is very similar to that estimated by the smoother,
SM in (14). This is an indication of the consistency and
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Example application:
Ocean Carbon-cycle Model Intercomparison Project 3 (OCMIP-3)
(Mikaloff Fletcher et al. 2006, 2007; Gruber et al. 2009)

anthropogenic CO2 uptake versus atmospheric CO2 pertur-
bation using results from the second phase of the Ocean
Carbon-cycle Model Intercomparison Project (OCMIP-2)
[Watson and Orr, 2003] (see Figure fs03 of the auxiliary
material). This analysis also reveals some notable departures
from our scaling around 1800 and 1940. These are caused
by the large changes in atmospheric CO2 growth rate that
occurred during these periods. The results from the
OCMIP-2 forward simulations also demonstrate that the
increase in the buffer factor due to the accumulation of
anthropogenic CO2 in the surface ocean between 1765 and
2005 is too small to have caused a detectable deviation from
our assumed linear scaling.
[15] Basis functions were computed for 30 surface regions

[Mikaloff Fletcher et al., 2003], and later aggregated to
24 regions. These aggregations were selected to minimize
the covariance between the modeled response to surface
fluxes into each pair of regions. High covariances between
regions indicate that the inversion cannot effectively distin-
guish between two regions either because the basis func-
tions are too similar or because the observational data set is
insufficient. The sum of the fluxes into two regions with
high covariance may be well constrained, but the individual
fluxes are highly uncertain.

2.3. OGCMs

[16] We employ basis functions from 10 OGCMs in order
to elucidate the role of differences in OGCM transport in the
inversion. These model simulations were undertaken by six
different modeling groups: Princeton (PRINCE) Massachu-
setts Institute of Technology (MIT), Bern-Switzerland
(Bern3D), Jet Propulsion Laboratory (ECCO), National
Center for Atmospheric Research (NCAR), and University
of Liége-Belgium (UL) (described briefly in the auxiliary
material). Princeton provided results from five different
configurations of their model [Gnanadesikan et al., 2002,
2004], summarized in Table ts01 of the auxiliary material.
Owing to the history of model development, several of these
models share common numerical cores. However, compar-
ison with data constraints have shown that differences in
sub-grid-scale parameterizations and surface forcing are a
stronger determinant of model differences than model
architecture [Dutay et al., 2002; Doney et al., 2004;
Matsumoto et al., 2004]. This is well illustrated by the
PRINCE family of models, which share the same funda-
mental numerical core setup, but have differing values of
the vertical and along-isopycnal diffusivity, and in some
cases also differing salinity restoring schemes, wind fields,
and topography. These changes cause the resulting model

Figure 2. The 24 regions used for the ocean inversion. The region numbers show the aggregation from
the original 30 regions [Mikaloff Fletcher et al., 2003] to the 24 regions used in this study.
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Example application:
Ocean Carbon-cycle Model Intercomparison Project 3 (OCMIP-3)
(Mikaloff Fletcher et al. 2006, 2007; Gruber et al. 2009)

North Atlantic and in the Arctic. This interpretation is con-
firmed by the nearly negligible difference of 0.02 Pg C a!1

when the sum of the fluxes from these two regions is
compared.
[32] The generally good agreement at the aggregated level

of 10 regions exists even when comparing the two flux esti-
mates at the full 23 region resolution of the ocean inversion
(Figure 2). With only two exceptions, the two flux estimates
still agree with each other to within better than 0.10 Pg C a!1.
The standard deviation of the difference between the two
estimates is 0.08 Pg C a!1, only slightly larger than the
estimated error for each method within each region, which
amounts, on average, to 0.06 Pg C a!1 for the inversion, and

0.05 Pg C a!1 for the p CO2 based estimates. Thus, for the
most part, the two estimates are statistically indistinguish-
able. But there are notable exceptions.
[33] In the temperate South Pacific, this more detailed anal-

ysis reveals that the majority of the discrepancy identified
above occurs in the western part, i.e., west of about 120!W
(regions 20 and 22), since the net fluxes in the eastern part
(regions 21 and 23–24) are small and differ little between the
two estimates. Although the data coverage in the western
region is somewhat better than that in the eastern region, the
average grid cell in this region still contains observations for
only 6 months out of 12, on average, requiring a substantial
amount of interpolation in a region of high uptake fluxes.

Figure 1. Air-sea CO2 fluxes for 10 regions, ordered by latitude and Ocean basin (positive: outgassing;
negative: uptake). (a) Comparison of contemporary air-sea fluxes of CO2. Shown are the ocean inversion
estimates (this study), the new p CO2-based estimates of Takahashi et al. [2008], the mean estimates
based on results from the 13 ocean biogeochemistry models that participated in the second phase of the
Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2) [Watson and Orr, 2003], and the mean
estimates from the TransCom-3 project based on the interannual (level 3) inversions of atmospheric CO2

[Baker et al., 2006]. The uncertainties for the OCMIP-2 estimates reflect the (unweighted) standard
deviation across the 13 models, while the uncertainties for the TransCom estimates were obtained by
quadrature of the within and between model errors reported by Baker et al. [2006]. (b) Weighted mean
estimates of the natural, anthropogenic, river-induced, and contemporary air-sea fluxes of CO2 based on
our ocean inversion [Mikaloff Fletcher et al., 2006, 2007]. The results are aggregated to 10 regions from
the 23 regions solved for in the inversion for reasons of clarity. Error bars denote the cross-model
weighted standard deviation of the mean. The anthropogenic and contemporary CO2 fluxes are for a
nominal year of 1995.
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Figure 1. Air-sea CO2 fluxes for 10 regions, ordered 
by latitude and Ocean basin (positive: outgassing; 
negative: uptake). (a) Comparison of contemporary 
air-sea fluxes of CO2. Shown are the ocean inversion 
estimates (this study), the new pCO2-based estimates 
of Takahashi et al. [2008], the mean estimates based 
on results from the 13 ocean biogeochemistry models 
that participated in the second phase of the Ocean 
Carbon-cycle Model Intercomparison Project 
(OCMIP-2) [Watson and Orr, 2003], and the mean 
estimates from the TransCom-3 project based on the 
interannual (level 3) inversions of atmospheric CO2 
[Baker et al., 2006]. The uncertainties for the 
OCMIP-2 estimates reflect the (unweighted) standard 
deviation across the 13 models, while the 
uncertainties for the TransCom estimates were 
obtained by quadrature of the within and between 
model errors reported by Baker et al. [2006]. (b) 
Weighted mean estimates of the natural, 
anthropogenic, river-induced, and contemporary air-
sea fluxes of CO2 based on our ocean inversion 
[Mikaloff Fletcher et al., 2006, 2007]. The results are 
aggregated to 10 regions from the 23 regions solved 
for in the inversion for reasons of clarity. Error bars 
denote the cross-model weighted standard deviation 
of the mean. The anthropogenic and contemporary 
CO2 fluxes are for a nominal year of 1995.



Example application:
Ocean Carbon-cycle Model Intercomparison Project 3 (OCMIP-3)
(Mikaloff Fletcher et al. 2006, 2007; Gruber et al. 2009)

Figure 5
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relatively small (! "0.2 Pg C a"1), supporting a string of
studies that all demonstrated a relatively small global
interhemispheric transport of carbon [e.g., Keeling and
Peng, 1995; Murnane et al., 1999; Sarmiento et al., 2000]
in contrast to the original suggestion by Keeling et al. [1989]
of a large interhemispheric transport of the order of 1 Pg C
a"1 (see more detailed discussion by Mikaloff Fletcher et al.
[2007]).
[58] The contemporary southward transport of carbon in

the Atlantic is much smaller than that for natural carbon
(green arrows), as the latter is compensated by a substantial
northward transport of anthropogenic carbon (red arrows).
With the expected continued uptake of anthropogenic CO2

from the atmosphere and the resulting increase in the north-
ward transport of anthropogenic CO2, one can soon expect a

reversal of the sign of the transport of total carbon in the
South Atlantic, a change that we infer to have taken place
already in the transport at about 31!S. A similar compensa-
tion between the transport of natural and anthropogenic
carbon occurs in the Indian Ocean, where the transport of
anthropogenic carbon is southward, whereas the natural
carbon transport is northward. In contrast, the two component
fluxes enhance each other in the South Pacific, resulting in
roughly a doubling of the total northward transport of carbon
in this region. At the equator and in the North Pacific, both
compensation and enhancement occur. Overall, as was the
case for the air-sea fluxes, the superposition of natural and
anthropogenic carbon transports results in a complex pat-
tern of the contemporary (total) carbon transport, whose
structure can only be understood by considering separately

Figure 6. Global map of the contemporary transport of carbon (blue arrows with large bold numbers)
and of its components (natural carbon with green arrows and anthropogenic carbon with red arrows)
based on the inverse flux estimates (small italic numbers). Depicted are the weighted mean estimates and
their weighted mean standard deviation, all in Pg C a"1. Also shown are the storage estimates, i.e., the
integrated rates of change in DIC arising from the anthropogenic CO2 perturbation.

Figure 5. Ocean interior distributions of the tracers reflecting the exchange of CO2 across the air-sea interface, displayed
as global-scale section plots organized around the Southern Ocean in the center. (a) Distribution of anthropogenic CO2,
Cant, estimated using the DC* method of Gruber et al. [1996]. (b) Distribution of the gas exchange component of natural
CO2, DCgas ex, following Gruber and Sarmiento [2002]. The inversion interprets these distributions by determining, given
ocean circulation and mixing, a set of surface ocean fluxes that most closely matches these observations. Also shown are
isolines of potential density anomalies, sq (density referenced to the ocean surface minus 1000 kg m"3), along which most
of the oceanic flow occurs. Major ocean circulation features are indicated by schematic arrows. Figure 5 is based on data
taken from GLODAP [Key et al., 2004]. NADW: North Atlantic Deep Water, CDW: Circumpolar Deep Water; SAMW:
Subantarctic Mode Water; AAIW: Antarctic Intermediate Water.
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Example application:
Ocean Carbon-cycle Model Intercomparison Project 3 (OCMIP-3)
(Mikaloff Fletcher et al. 2006, 2007; Gruber et al. 2009)

configurations to span nearly the entire range of model
behavior seen in the global coarse-resolution models that
participated in OCMIP-2 [Matsumoto et al., 2004].
[17] Four of the models used here have been compared in

OCMIP-2 [Dutay et al., 2002; Doney et al., 2004; Watson
and Orr, 2003]: the LL configuration of PRINCE, and the
MIT, NCAR, and UL models. The MIT model used here
has a slightly different configuration from the version used
in OCMIP-2.
[18] In order to determine which models are likely to have

the most accurate transport on the timescale of anthropo-
genic CO2 perturbation, we compare the GLODAP gridded
CFC-11 data set with simulations of CFC-11 from that
followed the OCMIP-2 protocol [Dutay et al., 2002]. Table 1
shows the correlation between the gridded CFC-11 data
and the modeled CFC-11, the standard deviation of the
modeled CFC-11 normalized by the standard deviation of
the gridded CFC-11 data, and a CFC-11 model skill score
based on these two quantities [Taylor, 2001]. We use
these CFC-11 skill scores to weight the different models
when calculating the between-model means and standard
deviations, such that models that simulate the distribution
of CFC-11 more accurately have a stronger effect on the
reported results.

3. Results
3.1. Anthropogenic CO2 Uptake

[19] The inversion finds a global anthropogenic CO2

uptake of 2.2 Pg C yr!1, with a weighted standard deviation
of 0.25 Pg C yr!1, scaled to a nominal year of 1995. The
range across all models is 1.85 to 2.81 Pg C yr!1 (Table 1).
This substantial range is due in part to differences between
the effective vertical diffusivities in the models. Highly
diffusive models distribute the dye over a larger portion
of the ocean. This requires larger anthropogenic CO2 fluxes
in order to match the high observed anthropogenic CO2

concentrations in the upper ocean. The OGCMs providing
the high and low ends of this range (UL and PRINCE-LL)
also have lower CFC-11 skill scores than the other OGCMs

used in this study. This suggests that the cross-model range
can be considered an upper estimate of the uncertainty
associated with the inversely estimated global anthro-
pogenic CO2 uptake.
[20] The greatest anthropogenic CO2 uptake occurs in the

Southern Ocean, particularly in the subpolar regions (44!S
to 58!S), where the weighted mean anthropogenic CO2

uptake is 0.51 Pg C yr!1 with a standard deviation of
0.17 Pg C yr!1 (Figure 3). This flux represents 23% of the
global total anthropogenic CO2 uptake. In addition, the
inversion finds considerable anthropogenic CO2 uptake in
the tropics. In contrast, anthropogenic CO2 uptake at mid
latitudes is found to be low, despite the fact that the greatest
anthropogenic CO2 storage occurs there (Figure 1).
[21] These broad features in the spatial pattern of the

fluxes are consistent across all of the models that partici-
pated in this study. However, there exists considerable
model differences between the anthropogenic flux estimates
for some regions, leading to substantial uncertainties in the
weighted means. The greatest anthropogenic CO2 uncer-
tainty occurs in the Southern Ocean, with a weighted
standard deviation from the weighted mean uptake of
0.10 Pg C yr!1 for the region south of 58!S and 0.17
Pg C yr!1 for the region between 44!S and 58!S. As a
percentage of the total signal, the range in the high-latitude
North Atlantic is also very high. The inverse estimates are
the most consistent in the North Atlantic and North Pacific.
[22] This uptake pattern is in good agreement with pre-

vious forward modeling studies. In some of the first 3-D
OGCM studies of the oceanic uptake of anthropogenic CO2,
Sarmiento et al. [1992] and Maier-Reimer and Hasselmann
[1987] found a similar pattern of vigorous anthropogenic
CO2 uptake at high latitudes and at the equator, and low
anthropogenic CO2 uptake at midlatitudes. They attributed
the high uptake in the tropics and in the high latitudes
primarily to these regions being characterized by high rates
of transport and mixing of subsurface waters depleted in
anthropogenic CO2 to the surface. Although variations in
gas transfer velocity were found by Sarmiento et al. [1992]
to be of second importance for the global uptake of

t1.1 Table 1. Evaluation of Model Skill Based on Comparisons Between CFC-11 Model Simulations and the
GLODAP Gridded CFC Data Seta

Correlation
Normalized
Std. Dev.b Model Skillc

Inverse Anthropogenic CO2

Uptake, Pg C yr!1
Forward Anthropogenic CO2

Uptake, Pg C yr!1t1.2

BERN 0.89 1.04 0.81 2.05 N.A.t1.3
ECCO 0.96 0.89 0.91 2.01 N.A.t1.4
MIT 0.91 1.00 0.85 2.22 N.A.t1.5
NCAR 0.95 0.98 0.91 2.18 2.36t1.6
PRINCE-LL 0.90 1.18 0.80 1.85 1.90t1.7
PRINCE-HH 0.93 1.05 0.87 2.33 2.43t1.8
PRINCE-LHS 0.93 1.04 0.86 1.99 2.04t1.9
PRINCE-2 0.93 1.03 0.87 2.17 2.24t1.10
PRINCE-2a 0.91 1.05 0.85 2.25 2.35t1.11
UL 0.87 1.0 0.77 2.81 2.95t1.12
Mean 0.92 1.02 0.85 2.18 2.32t1.13

aAlso tabulated are forward and inverse estimates of the global total anthropogenic CO2 uptake (Pg C yr!1, scaled to 1995).
Forward results are from OCMIP-2 [Dutay et al., 2002; Watson and Orr, 2003].t1.14

bNormalized Std. Dev. is defined as the standard deviation of the modeled field divided by the corresponding standard
deviation of the observed field.t1.15

cFollowing Taylor [2001].t1.16
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Tracer Green’s Functions from old 2-deg ECCO solution was among 
solutions with highest correlation, lowest standard error, and highest 
model skill relative to CFC-11 observations!
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Comparison with representer method

The representer method (see Andrew Bennett’s books and publications) 
was developed for data-sparse inverse modeling problems.

Both the Green’s Functions and representer approaches provide a 
reduced orthogonal basis sets for inversions.  The two methods are 
mirror images of each other.

The representer method should be used when the number of available 
observations is small.  The optimized solution is projected on the 
“observable” parameter space.

The Green’s Functions approach should be used when the number of 
control parameters is small. The optimized solution is projected on the 
“controllable” parameter space.



Comparison with adjoint method

The Green’s function approach has been called a poor-man’s adjoint.

Advantages relative to the adjoint method are simplicity of 
implementation, the possibility of offline experimentation with different 
cost functions, improved robustness in the presence of nonlinearities, and 
complete a posteriori error statistics for the parameters being estimated.

The major drawback of the Green’s function approach is that 
computational cost increases linearly with the number of control 
parameters.  By comparison, the cost of the adjoint method, while 
substantial, is largely independent from the number of control 
parameters.



Summary and concluding remarks

Green’s functions provide a simple yet effective method to test and to 
calibrate general circulation model parameterizations, to study and to 
quantify model and data errors, to correct model biases and trends, and to 
blend estimates from different solutions and data products.

They can be applied to pretty much any general circulation model since 
all that is required is forward-model sensitivity experiments.

They are a better way to adjust uncertain model parameterizations than 
ad-hoc or one-at-a time parameter adjustments.

In the absence of adjoint model, or for strongly nonlinear systems, they 
can be used for preliminary model adjustments.



Model Green’s Functions cheat sheet
Least squares method based on computation of model Green’s functions.

Used for, e.g., atmospheric tracer inversions (Enting and Mansbridge, 1989; Tans et al., 1990; Bousquet et al., 2000),
ocean circulation estimates (Stammer and Wunsch, 1996; Menemenlis et al., 1997a, b; ATOC 1998, 2005; Nguyen et al., 2011),

ocean carbon inversions (Gloor et al., 2003; Mikaloff Fletcher et al., 2006; 2007; Gruber et al., 2009; Brix et al., 2015),
and joint ocean-atmosphere carbon dioxide inversions (Jacobson et al., 2007a; 2007b).

GCM: x(ti+1)  =  M(x(ti),h)

Data: y =  H(x) + e = G(h) + e

Cost function:             J = eTR-1e

Linearization: G(h)  ≈ G(0) + Gh

Solution: xa=xb+(GTR-1G)-1R-1(y–G(0))

x(ti) is the ocean model state vector at time ti
M represents the numerical model
h is a set of control parameters.

y is the available observations
H is the measurement model
G is a function of M and H
e is additive noise

J is quadratic cost function
R is estimate of covariance matrix of e

G is a kernel matrix whose columns are 
computed using a GCM sensitivity 
experiment for each parameter in vector h.
G(0) is from baseline GCM integration.

Xa is optimized solution that minimizes cost 
function J.
Xb is the solution of the baseline simulation


