Regional state estimates

ECCO Summer School 2019
Matt Mazloff, Bruce Cornuelle, Ganesh Gopalakrishnan, Heriberto Vazquez Peralta, Ariane Verdy, Kasia Zaba
ECCO@Scripps: Our group contributes to the development and production of regional ocean state estimation using the methodology developed by the ECCO consortium (ecco.jpl.nasa.gov). The ECCO code is based on the MIT general circulation model (MITgcm) and employs automatic/algorithmic differentiation (AD) tools for generating tangent linear and adjoint code for ocean circulation and climate studies. The goal is to produce a model-observations synthesis, with consistent dynamics and closed budgets for all tracers, to be used for scientific analysis. We are currently working on:

1. **Southern Ocean State Estimate (SOSE)**
 - The latest product, b-SOSE, is a physical-biogeochemical state estimate produced as part of the SOCCOM project.

2. **California Current System State Estimate (CASE)**
 - Short- and long-term reanalyses synthesize observations of the California Current System.

3. **Tropical Pacific Ocean State Estimate (TPOSE)**
 - Observations from the TPOS constrain 4-month state estimates.

4. **Gulf of Mexico State Estimate (GoM)**
 - Estimation and prediction of the loop current and loop current eddy separation.

5. **Northwest Pacific State Estimate (NWPac)**
 - State estimation and prediction in the regions of Palau and Northern Philippine Sea.
ECCO software enables numerous applications
Flagship: 1992 to present production run

Targeted efforts can enable

- Reproducing eddies: currently intrinsic eddies only controllable with initial conditions. Thus need assimilation windows less than ~4 months.
- Consistency with specific system components (e.g. BGC, internal waves)
- Consistency in specific regions or times, or with specific obs platforms. Here the optimization problem can be framed to prioritize consistency
- Observing system design
- Forecasting: goal of state estimate is to provide forecast initialization
Targeted efforts can enable reproducing eddies
- Mapped products have formal mapping errors and representation error.
- **Formal mapping error** primarily from lack of info: sparse or noisy obs.
- **Representation error** comes from low resolution, missing physics, or errors in the model-data synthesis methodology.
- Mapping methods vary substantially, primarily with regards to how covariance estimates are determined and the level of physics included.
- **Representation error**: must choose what scales are signal or noise.
Tropical Pacific Ocean State Estimate (TPOSE)

A state estimate for Jan 2010 - Dec 2017 overlapping 4-month assimilation windows, 1/3° resolution.

Scientific focus on mass and heat budgets. Also BGC and observing system design.

Switching from ERA-interim to ERA-5 reduced cost of initial forward runs
- for 11/13-2/14: SST is reduced by 18%, RADS by 2%, MDT by 4%
- JRA-55 gives similar results for SST & MDT but 5% increase in RADS cost.

Validates both new atmospheric reanalyses and MITgcm in targeted region
The state estimate has been produced for the period **Jan 2010 to Dec 2017+** with a 4-month assimilation window, 1/3° resolution.

Argo, CTD, XBT, altimetry, and SST are used as constraints. TAO and Spray glider data are used for independent validation.
100 m temperature time series 2010-2014

130°E, 2°N

147°E, 0°N

155°W, 0°N

155°W, 8°N

125°W, 2°S

TAO

state est.

Argo
100 m temperature at TAO moorings

fraction of variance error

0 (blue) = good
1 (yellow) = bad

State estimation enables reduced model representation error and by propagating high-frequency dynamics with model physics.
• Other movie here
ECCO software enables numerous applications
Flagship: 1992 to present production run

Targeted efforts can enable

- Reproducing eddies: currently intrinsic eddies only controllable with initial conditions. Thus need assimilation windows less than ~4 months.
- **Consistency with specific system components (e.g. BGC, internal waves)**
- Consistency in specific regions or times, or with specific obs platforms. Here the optimization problem can be framed to prioritize consistency
- Observing system design
- Forecasting: goal of state estimate is to provide forecast initialization
Assimilation window length

- **Shorter windows**
 - more control on the solution via optimization of ICs: fits data better

- **Longer windows**
 - More data in your window.
 - Greater manifestation of **model physics** (and model error)
Assessing 4D-VAR for dynamical mapping of coastal high-frequency radar in San Diego

Dynamics of Atmospheres and Oceans, 2009

- MITgcm. 1 km resolution. 40 vertical layers.
- Initialized from single profile and forced by single shore station.
- Solve for ICs, open BCs of T, S, U, V, and surface fluxes to fit HF radar velocity observations

Results:
- The adjoint method can successfully be used in this setup over 10-day windows
- State estimates produced that are dynamically consistent and consistent with HF radar
- Forecast skill exceeds persistence for 20 hours
Sensitivity of misfit at end of assimilation window to temperature at 250 m =>

Sensitivity to state occurs immediately and over entire water column. Fit is sensitive to internal waves, Rossby waves, and topographically trapped waves.
Sensitivity of misfit at end of assimilation window to wind stress at 242.5°E =>

Sensitivity to wind stress dominated by inertial waves (period ~22.3 hours at 32.5°N), and damps after a few days.
• Misfit reduction efficient. System is controllable.
• Optimization brings misfit to about 6 cm s\(^{-1}\).
• Initial model error variance shows strong peaks near the semi-diurnal period.
• **IC controls matter for \(~18\) hours.** Then mostly wind stress, but fluxes and OBCs do contribute.
Solution on 7 December 2003 for window starting on 1 December 2003

• The assimilation was able to solve for a dynamically consistent solution.
• SSH signal is +/- 2 cm!
Solution on 7 December 2003

Top: assimilation starting 1 Dec. 2003
(i.e. state 6 days from IC)

Bottom: assimilation starting 6 Dec. 2003
(i.e. state is 1 day from IC)
ECCO software enables numerous applications
Flagship: 1992 to present production run

Targeted efforts can enable

- Reproducing eddies: currently intrinsic eddies only controllable with initial conditions. Thus need assimilation windows less than ~4 months.
- Consistency with specific system components (e.g. BGC, internal waves)
- Consistency in specific regions or times, or with specific obs platforms. Here the optimization problem can be framed to prioritize consistency
- Observing system design
- Forecasting: goal of state estimate is to provide forecast initialization
Gulf of Mexico

Goals

- State estimation and prediction of the loop current and its separation
- Synthesize deep gulf observations 2009-2011 to facilitate understanding of deep circulation and topographic interaction

Setup

- 1/20° (~5km) in the deep gulf telescoping to 1/10° near the boundary
- 80 vertical levels (~2.5m near surface)
- NCEP1 atmospheric state. Monthly runoff climatology
- HYCOM+NCODA global 1/12° analysis initial and boundary conditions
- Controls: atmospheric state. U,V,T,S initial and open boundary conditions
- 1 to 2 month assimilation window
Forecasting the loop current
Gopalakrishnan et al 2013

End of 2 month state estimate

Forecast at 1 month

Forecast at 2 months

AVISO at particular time
SSH r.m.s. difference with AVISO

Ref. no assimilation
Assimilation only satellite
Assimilation only mooring
Assimilation both
HYCOM
Bay of Bengal

Goals

- Determine predictability of SST
- Determine atmospheric-ocean coupling, and SST feedback on the atmospheric state
- Understanding and prediction of the monsoon rainfall

Setup

- 1/12° (~8km) with 50 vertical levels (~2.5m near surface)
- JRA-55 atmospheric state. Monthly runoff climatology
- HYCOM+NCODA global 1/12° analysis initial and boundary conditions
- Controls: atmospheric state. U,V,T,S initial and open boundary conditions
- 1 to 2 month assimilation window
SSH $rmsd$ for June - August 2016

SSH RMSD : AVISO

AVISO clim SSH

persistence = const SSH

prior model run

HYCOM

state estimate for June and then forecast for July & August
Eddies drive transport across box. Nonlinear dynamics dominate, but eddies persist for many months. Can we estimate eddy fluxes?
Sea surface height (m) along 20°N. Eddy detection applied with criteria that lifetime greater than 4 weeks. The eddy locations shown in blue (CCW) and black (CW).
California State Estimate (CASE)

- Regional version of MITgcm
- \(\frac{1}{16} \) degree (~7km) resolution
- 4-dimensional variational (4D-Var) assimilation
 - Consistent with model dynamics over 3 month assimilation windows
 - Optimized to fit SSH, SST, glider, Argo, XBT observations
- 4D solutions for Jan 2007 - Mar 2017

Zaba et al. (2018) under review
CCS Upwelling indices state estimate

Depth of $\rho = 26$ isopycnal

Undercurrent index

Depth of $12^\circ C \& 14^\circ C$ isotherm

Mean temperature in an upwelling location

http://ecco.ucsd.edu/case_stse_results2.html
Global SST Anomalies

Capital Weather Gang
Red crabs swarm Southern California, linked to ‘warm blob’ in Pacific
By Jason Samenow June 17, 2015 Email the author

The blob': how marine heatwaves are causing unprecedented climate chaos
Wide-scale disruption from warming oceans is increasing, but they could change our understanding of the climate

Blob of warm Pacific water threatens ecosystem, may intensify drought
By Steve Almasy, Dave Hennen and Jennifer Gray, CNN
Updated 11:43 AM ET, Wed April 22, 2015

El Niño could bring disaster and drought relief to California
By RONG-GONG LIN II, THOMAS SUH LAUDER and PAUL DUGINSKI
JUL 22, 2015 | 12:30 PM

'Godzilla' El Niño: Unbelievable rain for California, dry winter for Midwest
By RONG-GONG LIN II and CHRISTINE MAI-DUC
AUG 21, 2015 | 7:53 AM

KQED SCIENCE
El Nino Forecast for California: Batten Down the Hatches
Warm Temperatures along Line 90

Temperature anomalies (°C) at 50 m depth.

El Niño warming peaks at turn of year 2015-16

MHW warming peaks at turn of year 2014-15
Warm Temperatures along Line 90

Depth-dependent Temperature Anomaly (°C)

MHW warming is shallow and surface-intensified.

El Niño warming penetrates deeper.
Positive Heat Advection Subsurface (50 - 150 m)

Temperature anomalies along 26.0 kg/m3 isopycnal.

Anomalous poleward advection during peak El Niño.
Assess heat budget in control volumes. Due to excessive short wave heating estimates in reanalysis there are large adjustments to temperature initial conditions. For budgets this adjustment must be accounted for.
Shortwave heat flux is too strong because weather model does not capture clouds near the coast

Optimization corrects by reducing T initial conditions (every 3 months)
ECCO software enables numerous applications
Flagship: 1992 to present production run

Targeted efforts can enable
- Reproducing eddies: currently intrinsic eddies only controllable with initial conditions. Thus need assimilation windows less than ~4 months.
- Consistency with specific system components (e.g. BGC, internal waves)
- Consistency in specific regions or times, or with specific obs platforms. Here the optimization problem can be framed to prioritize consistency
- Observing system design
- Forecasting: goal of state estimate is to provide forecast initialization
- Development!
Assimilation for next generation observing system

- Characterize physical scales and **develop tools** to map the state
- Hold model accountable to data. As data stream grows must also **semi-automate QC**: hold data accountable to model

Characterizing the California Current

Chereskin et al, submitted, JGR-Oceans,

Acoustic Doppler Current Profiler data:
1993-2004, 39 cruises
Assimilation for next generation observing system

- Characterize physical scales and **develop tools** to map the state
- Hold model accountable to data. As data stream grows must also **semi-automate QC**: hold data accountable to model

Chereskin et al, submitted, JGR-Oceans,

Characterizing the California Current

The challenge is to represent both the **rotational** (balanced, geostrophic) and **divergent** (ageostrophic) components of the flow.

In the CCS, the energy in these components converge at 70 km
Mapping all parts of the signal

Normalized relative vorticity, ζ/f, at 13m

- Surface waves
- Tides
- Internal waves
- Mixing
- Errors
- High-resolution implies high computational cost regional model and multi-grid assimilation
Regional model problems

- Mooring has high-frequency energy
- **Global** Ilc4320 (2km) replicates mooring energy
- **Regional** ROMS (1km), MITgcm (2km), and NCOM (3.7km) are missing high-frequency energy
Mapping all parts of the signal

MITgcm: California Current test bed

- MITgcm
- 2 km
- Numerics identical to LLC4320
- Inputs similar
- Mooring and **global** LLC4320 (2km) have high-frequency energy
- **Regional** ROMS (1km), MITgcm (2km), and NCOM (3.7km) are all missing high-frequency energy

Hypotheses:
1. Representation of interaction with bottom topography
2. Noise in LLC4320 and/or mooring meaning one or both is wrong.
3. Tidally generated internal waves do not have time to exchange energy and fill the (Garrett-Munk) spectrum in a regional domain.
4. How tides forced (i.e. as pressure loading) & their accuracy in LLC4320.
Vertical velocity (W) at 500 m

01-Jun-2012

01-Jun-2016

LLC4320

MITgcm regional
High-pass SSH

Global LLC4320 (left) vs a regional version with same numerics (right)

High-pass vertical velocity
• Mooring and **global** LLC4320 (2km) have high-frequency energy

• **Regional** ROMS (1km), MITgcm (2km), and NCOM (3.7km) are all missing high-frequency energy

Hypotheses:
• Representation of interaction with bottom topography
• Noise in LLC4320 and/or mooring meaning one or both is wrong.
• How tides forced (i.e. as pressure loading) & their accuracy in LLC4320.
• Tidally generated internal waves do not have time to exchange energy and fill the (Garrett-Munk) spectrum in a regional domain.
Wavelength (km)

Along-track wavenumber (cpkm)

power spectral density (m²/cpkm)

- Sentinel 3
- AltiKa
- Jason 1-2 (track 195)
- global model (line 90)
- model daily-averaged
- regional model (line 90)
Steric height

time series

power spectra density

A)

B)

C)
• Mooring and **global** LLC4320 (2km) have high-frequency energy

• **Regional** ROMS (1km), MITgcm (2km), and NCOM (3.7km) are all missing high-frequency energy

Hypotheses:

• Representation of interaction with bottom topography

• Noise in LLC4320 and/or mooring meaning one or both is wrong.

• How tides forced (i.e. as pressure loading) & their accuracy in LLC4320.

• Tidally generated internal waves do not have time to exchange energy and fill the (Garrett-Munk) spectrum in a regional domain.
What is impact of local barotropic tidal forcing (imposed as a pressure loading) on the regional setup?

One year time-series

![Graphs showing mean and standard deviation of salinity and temperature for different models with and without local tidal forcing.]

M2 Mooring: without local tidal forcing.

Model 1: with local tidal forcing.
What is impact of local barotropic tidal forcing (imposed as a pressure loading) on the regional setup?

Time series

- **Salinity at 60m**
 - **Salinity**
 - mooring
 - model 1
 - model 2

- **Temperature at 60m**
 - **Potential temperature [°C]**
 - mooring
 - model 1
 - model 2

Frequency spectra

- **Salinity at 60m**
 - psu²/cpd
 - mooring
 - model 1
 - model 2

- **Temperature at 60m**
 - °C²/cpd
 - mooring
 - model 1
 - model 2

Models

- Model 1: without local tidal forcing.
- Model 2: with local tidal forcing.
Both regional and global MITgcm setups have reasonable representations of the tides, with discrepancies less than 35%. However, the global model M2 amplitude averages 0.657 m for the three tide gauge locations, while the regional amplitude mean is 31% lower at 0.451 m.

https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels
• Mooring and **global** **Llc4320 (2km)** have high-frequency energy

• **Regional** **ROMS (1km)**, MITgcm (2km), and NCOM (3.7km) are all missing high-frequency energy

Hypotheses:

- Representation of interaction with bottom topography
- How tides forced (i.e. as pressure loading) & their accuracy in LLC4320.
- Noise in LLC4320 and/or mooring meaning one or both is wrong.
- Tidally generated internal waves do not have time to exchange energy and fill the (Garrett-Munk) spectrum in a regional domain.
Variance of vertical velocity, w, at 500. The 3000 m bathymetry contour in black.
Ratio of w variance at 500 m:
Regional divided by global. Three points: P1 near the Mendocino Ridge, P2 in the analysis domain southwest corner, P3 inside the Southern California Bight.

Vertical profiles of vertical velocity, w, standard deviation at P1, P2, P3 for the global (solid lines) and regional (dashed lines) models.
Vertically integrated high-pass baroclinic kinetic energy [J m]. The total high-pass baroclinic energy in the domain is 1.79 PJ for the global model and 0.71 PJ for the regional model.
Mean high-pass barotropic KE
Global: 1.40 PJ Regional: 0.71 PJ
Barotropic KE at the M2 frequency
Global: 1.33 PJ Regional: 0.57 PJ
The mean high-pass baroclinic KE
Global: 1.79 PJ Regional: 0.71 PJ

Global has a baroclinic KE 0.39 PJ greater than barotropic.
Global has a baroclinic KE 0.39 PJ greater than barotropic.

Internal wave energy flux along the analysis domain boundaries. Red is flux into the domain. Blue is out of the domain.

Integrated boundary energy fluxes
- **Global:** +74 MW
- **Regional:** -165 MW

To reconcile the excess 0.39 PJ with a boundary flux discrepancy of 239 MW implies a baroclinic wave energy residence time in the domain of 18.9 days.
• Mooring and **global** LLC4320 (2km) have high-frequency energy

• **Regional** ROMS (1km), MITgcm (2km), and NCOM (3.7km) are all missing high-frequency energy

Hypotheses:

- Representation of interaction with bottom topography
- How tides forced (i.e. as pressure loading) & their accuracy in LLC4320.
- Noise in LLC4320 and/or mooring meaning one or both is wrong.
- Tidally generated internal waves do not have time to exchange energy and fill the (Garrett-Munk) spectrum in a regional domain.

Solutions:

1. Make domain large enough to allow internal waves to transform
2. Prescribe internal wave flux into the domain at the open boundaries
Biogeochemical SOSE Solution Now Available
Access our 3-D estimate of Southern Ocean biogeochemistry
Biogeochemical – ice – ocean Southern Hemisphere model
Mercator projection poleward of 30°S with 1/6° & 52 levels, then telescopes to equator.

Biogeochemistry with Light, Iron, Nutrients and Gases (BLING) version 2.

State estimate is being derived with MITgcm-ECCO machinery:
Closed budgets!
Budget diagnostic software and examples

http://sose.ucsd.edu/budgets/

BGC budgets being presented for BSOSE iteration 105 (2008-2012)

In development. Currently has: DIC, O2, NO3, and FE for top 150m and top 650m

For five regions of the Southern Ocean we present:

Time series (bins), mean (bins), mean
Regional models are great for targeted efforts

- Reproducing small scales
- Consistency with specific system components, regions, times, obs platforms
- Observing system design
- Forecasting
- Development

But beware the open boundaries!!!