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Sensitivity of CO2 Sea Air Flux 
The unrealistically large CO2 flux during ENSO present in the filtered 
solution (left) due to anomalous vertical advection is corrected in the 

smoothed estimate (right) consistent with observations.   

(G.McKinley, 2002)
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Ocean Carbon-cycle Model Intercomparison Project 3 (OCMIP-3)
(Mikaloff Fletcher et al. 2006, 2007; Gruber et al. 2009)

configurations to span nearly the entire range of model
behavior seen in the global coarse-resolution models that
participated in OCMIP-2 [Matsumoto et al., 2004].
[17] Four of the models used here have been compared in

OCMIP-2 [Dutay et al., 2002; Doney et al., 2004; Watson
and Orr, 2003]: the LL configuration of PRINCE, and the
MIT, NCAR, and UL models. The MIT model used here
has a slightly different configuration from the version used
in OCMIP-2.
[18] In order to determine which models are likely to have

the most accurate transport on the timescale of anthropo-
genic CO2 perturbation, we compare the GLODAP gridded
CFC-11 data set with simulations of CFC-11 from that
followed the OCMIP-2 protocol [Dutay et al., 2002]. Table 1
shows the correlation between the gridded CFC-11 data
and the modeled CFC-11, the standard deviation of the
modeled CFC-11 normalized by the standard deviation of
the gridded CFC-11 data, and a CFC-11 model skill score
based on these two quantities [Taylor, 2001]. We use
these CFC-11 skill scores to weight the different models
when calculating the between-model means and standard
deviations, such that models that simulate the distribution
of CFC-11 more accurately have a stronger effect on the
reported results.

3. Results
3.1. Anthropogenic CO2 Uptake

[19] The inversion finds a global anthropogenic CO2

uptake of 2.2 Pg C yr!1, with a weighted standard deviation
of 0.25 Pg C yr!1, scaled to a nominal year of 1995. The
range across all models is 1.85 to 2.81 Pg C yr!1 (Table 1).
This substantial range is due in part to differences between
the effective vertical diffusivities in the models. Highly
diffusive models distribute the dye over a larger portion
of the ocean. This requires larger anthropogenic CO2 fluxes
in order to match the high observed anthropogenic CO2

concentrations in the upper ocean. The OGCMs providing
the high and low ends of this range (UL and PRINCE-LL)
also have lower CFC-11 skill scores than the other OGCMs

used in this study. This suggests that the cross-model range
can be considered an upper estimate of the uncertainty
associated with the inversely estimated global anthro-
pogenic CO2 uptake.
[20] The greatest anthropogenic CO2 uptake occurs in the

Southern Ocean, particularly in the subpolar regions (44!S
to 58!S), where the weighted mean anthropogenic CO2

uptake is 0.51 Pg C yr!1 with a standard deviation of
0.17 Pg C yr!1 (Figure 3). This flux represents 23% of the
global total anthropogenic CO2 uptake. In addition, the
inversion finds considerable anthropogenic CO2 uptake in
the tropics. In contrast, anthropogenic CO2 uptake at mid
latitudes is found to be low, despite the fact that the greatest
anthropogenic CO2 storage occurs there (Figure 1).
[21] These broad features in the spatial pattern of the

fluxes are consistent across all of the models that partici-
pated in this study. However, there exists considerable
model differences between the anthropogenic flux estimates
for some regions, leading to substantial uncertainties in the
weighted means. The greatest anthropogenic CO2 uncer-
tainty occurs in the Southern Ocean, with a weighted
standard deviation from the weighted mean uptake of
0.10 Pg C yr!1 for the region south of 58!S and 0.17
Pg C yr!1 for the region between 44!S and 58!S. As a
percentage of the total signal, the range in the high-latitude
North Atlantic is also very high. The inverse estimates are
the most consistent in the North Atlantic and North Pacific.
[22] This uptake pattern is in good agreement with pre-

vious forward modeling studies. In some of the first 3-D
OGCM studies of the oceanic uptake of anthropogenic CO2,
Sarmiento et al. [1992] and Maier-Reimer and Hasselmann
[1987] found a similar pattern of vigorous anthropogenic
CO2 uptake at high latitudes and at the equator, and low
anthropogenic CO2 uptake at midlatitudes. They attributed
the high uptake in the tropics and in the high latitudes
primarily to these regions being characterized by high rates
of transport and mixing of subsurface waters depleted in
anthropogenic CO2 to the surface. Although variations in
gas transfer velocity were found by Sarmiento et al. [1992]
to be of second importance for the global uptake of

t1.1 Table 1. Evaluation of Model Skill Based on Comparisons Between CFC-11 Model Simulations and the
GLODAP Gridded CFC Data Seta

Correlation
Normalized
Std. Dev.b Model Skillc

Inverse Anthropogenic CO2

Uptake, Pg C yr!1
Forward Anthropogenic CO2

Uptake, Pg C yr!1t1.2

BERN 0.89 1.04 0.81 2.05 N.A.t1.3
ECCO 0.96 0.89 0.91 2.01 N.A.t1.4
MIT 0.91 1.00 0.85 2.22 N.A.t1.5
NCAR 0.95 0.98 0.91 2.18 2.36t1.6
PRINCE-LL 0.90 1.18 0.80 1.85 1.90t1.7
PRINCE-HH 0.93 1.05 0.87 2.33 2.43t1.8
PRINCE-LHS 0.93 1.04 0.86 1.99 2.04t1.9
PRINCE-2 0.93 1.03 0.87 2.17 2.24t1.10
PRINCE-2a 0.91 1.05 0.85 2.25 2.35t1.11
UL 0.87 1.0 0.77 2.81 2.95t1.12
Mean 0.92 1.02 0.85 2.18 2.32t1.13

aAlso tabulated are forward and inverse estimates of the global total anthropogenic CO2 uptake (Pg C yr!1, scaled to 1995).
Forward results are from OCMIP-2 [Dutay et al., 2002; Watson and Orr, 2003].t1.14

bNormalized Std. Dev. is defined as the standard deviation of the modeled field divided by the corresponding standard
deviation of the observed field.t1.15

cFollowing Taylor [2001].t1.16
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CFC-11 experiment using ECCO-v0 has highest correlation, lowest 
standard error, and highest model skill relative to observations!

Dream of  implementing time-evolving, data-constrained  biogeochemistry on top of CS510, circa 2005 …



Posterior fluxes and uncertainties

Carbon Cycle Models

Ocean

Human

Terrestrial

Atmospheric 
Satellite Data

Surface
Satellite Data

“Top-down”CMS-Flux Framework

Total CH4NO2

Composition Transport Model

“Bottom-up”

Forecast

Inverse modeling

O
bservations

Top-down 
estimatesReconciliation

Surface fluxes and uncertainties

Cobs(x) = ky � F(x)k2
S�1

n

Cprior(x) = kx� xak2S�1
a

min
x

C(x) = Cobs(x) + Cprior(x)

Total CO2

Fossil Fuel- NO2:CO2 Combustion CO:CH4:CO2

Attribution

CO



ECCO2: an eddying ocean and sea ice data synthesis
• Eddying, full-depth ocean and sea ice state estimates based on 

constraining a numerical model with satellite and in situ data using the 
adjoint method (Menemenlis et al., 2008).

Darwin: a self-organizing marine ecosystem model
• The Darwin Project is an initiative to advance development and 

application of novel models of marine microbial communities, 
identifying the relationships of individuals and communities to their 
environment, connecting cellular-scale processes to global microbial 
community structure (Dutkiewicz et al., 2009).

ECCO2/Darwin ocean surface carbon flux estimates
• Together, ECCO2 and Darwin provide a time-evolving physical and 

biological environment for carbon biogeochemistry.

Sales pitch to NASA Carbon Monitoring System (CMS) Pilot Study circa ~2010 …



Global, Eddying, Ocean Ecology and Biogeochemistry Model
Problem: Global ocean biogeochemistry models 

suitable for Carbon Monitoring System (CMS) Flux 
studies require high spatial and temporal 
resolution to capture fine scale structure of carbon 
sources and sinks.  The problem addressed here 
is initialization/adjustment of such a model to 
minimize drift and distance from observations.

Finding: The trajectory of a global, eddying ocean 
biogeochemistry model can be adjusted to 
simultaneously reduce drift and distance from 
observations using a Green’s function approach.

Significance: The adjusted simulation is a first step 
towards a more accurate representation of ocean 
carbon cycle at high spatial and temporal 
resolution, suitable for studies of global air-sea-
land exchanges of carbon and ocean acidification.

H. Brix, et al., Ocean Model. 2015: Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model. 
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Top left: Example sea-air CO2 gas flux showing impact of ocean upwelling 
and synoptic atmospheric variability (negative values indicate ocean uptake).
Top right: Globally integrated sea–air CO2 fluxes for 2009 and 2010 for four
different model realizations (baseline is blue circles, two model Green’s 
functions in red and green circles, and optimized in black circles), vs 
Takahashi Atlas (black lines).

Middle: Scatter plot of observed (x-axis) and simulated (y-axis) pCO2 (left) 
and Alkalinity (right) for baseline (red) and optimized (black) simulations.

Bottom: Global volume-weighted trend vs. depth plots for nitrate (left) and 
oxygen (right), for the baseline (red) and optimized (black) simulations.



ENSO Impact on Ocean Carbon Uptake
Niño 4.0 SST index
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that observations represent the background surface CO2 mixing ratios rather than local source and sink
influences. More information on specific site locations is provided on the NOAA ESRL web page (http://www.
esrl.noaa.gov/gmd/ccgg/ggrn.php).

For comparison to surface stations, the GEOS-5 grid cell containing each station location was sampled at the
time that an observation was collected and simulated CO2 mixing ratios then vertically interpolated to the
altitude of the observing station creating model “pseudodata.” Observations and pseudodata are averaged
over the course of a day (when multiple observations are present), and daily simulated and observed CO2

mixing ratios at Mauna Loa, Ny-Alesund, and Palmer Station (indicated in Figure 4) are shown in Figure 5 for
the flux scenarios described in Table 1. One of the primary features evident in this comparison is difference
in annual atmospheric growth rate between the flux scenarios. In the beginning of 2009, all scenarios in the
GEOS-5 simulations begin from the same CO2 mixing ratios, but over time differences in the magnitude of the
combined land and ocean carbon flux cause the spread in the ensemble of simulations to grow. While this
spread in simulations caused by differing growth rates happens at all stations, it is most evident at Mauna Loa
and Palmer Station because of the smaller amplitude of the seasonal cycle at these locations. We calculate
growth rates for each flux scenario by first calculating themonthly mean of surface CO2mixing ratio at all CCGG
marine boundary layer (MBL) sites during 2009 and 2010. For each month, the 2009 MBL monthly mean is
subtracted from the corresponding 2010 value and these differences are averaged over all calendar months to
estimate the annual mean growth rate shown in Table 1. Using the samemethod to calculate the annual mean
growth rate from observations yields a value of 2.4 ppm. Flux scenario CG-NO, which combines NOBM and

Figure 5. (left columns) Simulated and observed CO2 at the Ny-Alesund (ZEP; top), Mauna Loa (MLO; middle), and Palmer Station (PSA; bottom). (right columns)
Simulated and observed CO2 at the same locations when differences in atmospheric growth rate are removed. Red indicates NOAA ESRL observations while
black, green, and blue indicates GEOS-5 simulated mixing ratios assuming flux scenarios CG-NO, AC-NO, and CG-ED, respectively (flux scenarios are described in
detail in Table 1).

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022411
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Fig. 9. Time-series of regionally integrated sea–air CO2 fluxes for 2010 from the optimized model run (V2) in PgC yr−1 (small blue dots) and, for reference, the monthly mean

values from the Takahashi et al. (2009) climatology (larger red dots). The black lines in the time-series plots denote “0”, values above this line represent outgassing, below it ocean

uptake; the scales are identical for all time-series plots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Annual mean CO2 gas fluxes in molC m−2 yr−1 for 2010 for the optimized

model run V2 (top) and the Takahashi et al. (2009) data set. Positive values (red) are

upward. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

8. Comparison with other studies

To further assess the adjusted ECCO2-Darwin simulation, we com-
pare the V2 simulation to other studies. Since other studies have
mostly reported annual mean results, we refer to our annual mean
air–sea CO2 flux in Fig. 10. The ocean inversion study by Gruber et al.
(2009) shows only slight discrepancies between the ocean inversion
estimate of uptake in the Southern Ocean (defined as south of 44°S)
and the Takahashi et al. (2009) Atlas with regard to the overall uptake
values, but a very different spatial structure. In the atlas, CO2 is taken
up near the continent (very weak to neutral in our V2 run), and re-
leased into the atmosphere north of the Antarctic Polar Front (strong
outgassing in V2). The values in the ocean inversion for the uptake in
that area are approximately between 0.5 and 3 molC m−2 yr−1 (nom-
inal for 1995), our model produces values between an outgassing of
up to 3 molC m−2 yr−1 in the Eastern Pacific Sector of the South-
ern Ocean to an uptake of up to 7 molC m−2 yr−1 off the coast of
Argentina. These overall higher values appear to be more in line
with the majority of the OCMIP-2 ocean forward models (Watson
and Orr, 2003) that are referred to by Gruber et al. (2009) with a
decidedly higher uptake in the Southern Ocean. The inverse calcu-
lations of Mikaloff Fletcher et al. (2006) find a strongly elevated up-
take of anthropogenic CO2 south of 44°S compared to results from

8 H. Brix et al. / Ocean Modelling 95 (2015) 1–14

Table 2

Costs per observation (J/NOBS) for each ECCO2-Darwin simulation

and multiplication factors for the optimized V2 simulation. The

“Linear combination” refers to the calculation of cost and fluxes

simply based on a linear combination of the factors from the sen-

sitivity runs, calculated without actually performing a run.

Name J/NOBS V2 factors

GLODAP 1.28 0.564

CCSM 1.97 0.160

KS 1.04 −0.0779

BLEND 1.66 0.104

NOBM 2.19 0.249

PISVEL 1.29

PICPOC 1.08

Linear combination 0.808

V2 0.824

6.2. Adjustment of ECCO2-Darwin model

On one hand, a limitation of the Green’s Functions approach is
that computational cost increases linearly with number of param-
eters to be adjusted. In practice this means that the number of
Green’s Functions (or forward model sensitivity experiments) that
can be computed is small. In this study we integrated one baseline
(GLODAP) and six sensitivity experiments (CCSM, KS, BLEND, NOBM,
PISVEL, and PICPOC) to construct the data kernel matrix (G in Eqs. (6),
(8), and (9)).

On the other hand, a strength of the Green’s Functions approach
is that once the model sensitivity experiments have been computed,
it is easy to experiment with a large number of choices for the cost
function, that is with the weights that are applied to the observa-
tions and prior model parameter estimates. After some experimen-
tation, we used the following data constraints (yo in Eqs. (4)–(6):
(1) surface pCO2 data for 2009 and 2010 from the “Global Surface
pCO2 (LDEO) Database” at the Carbon Dioxide Information Analysis
Center (Takahashi et al., 2011) as described in Section 5, (2) a global
mean air–sea CO2 flux of 2.4 PgC yr−1 for 2010 from the Global Car-
bon Project (2011), and (3) the Takahashi et al. (2009) Atlas for the
seasonal cycle of pCO2 after removing area-weighted monthly means
from the original values. The standard errors (the square root of the
diagonal elements of R in Eqs. (3), (8), and (9)) for the pCO2 data and
seasonal cycle atlas were set equal to the root-mean-square (RMS)
difference between data and the GLODAP run. The error for the global
mean air–sea CO2 flux was set to 0.01 PgC yr−1. It was assumed that
nothing is known a-priori about the model errors, that is Q−1 = 0 in
Eqs. (3) and (9).

The cost (J in Eq. (3)) per observation of each of these runs, for
the data sets and weights just discussed, is shown in Table 2. The op-
timized set of model parameters (ηa in Eq. (8)) indicate the linear
combination of the baseline and sensitivity experiments that mini-
mizes cost function J. The cost per observation of this optimized lin-
ear combination of experiments is indicated in the second-to-last row
of Table 2; it is reduced by 37% relative to the baseline/GLODAP sim-
ulation and 22% relative to the KS simulation, which had the lowest
overall cost prior to assimilation but with too strong global carbon
uptake (−3.21 PgC yr−1) relative to the Global Carbon Project (2011)
estimate. The most significant contribution to cost reduction (−35%)
comes from adjustment to initial conditions. The optimized partic-
ulate inorganic to organic carbon ratio (PICPOC), which is increased
more than threefold relative to the baseline simulation, also signifi-
cantly reduces (−29%) the cost function. By way of contrast, the opti-
mized piston velocity (PISVEL), which differs from baseline value by
only 3%, has negligible (−0.1%) impact on cost function reduction.

The last step is to rerun the OBGCM model using the optimized
initial conditions (a linear combination of GLODAP, CCSM, KS, BLEND,
and NOBM created using the multiplication factors listed in the last

column of Table 2) and optimized values for the PISVEL and PICPOC
parameters. We call this optimized simulation “Version 2” or “V2”,
and its characteristics are described in Tables 1 and 2. Notice that its
cost per observation differs by only 2% relative to the cost of the opti-
mized linear combination, 0.824 vs. 0.808 in Table 2, hence verifying
that the linearization assumption is largely satisfied.

7. V2: an optimized solution

The V2 model simulation yielded substantial cost (that is, data-
model mismatch) reductions. While the cost per observation of the
sensitivity experiments varied between 1.04 and 2.19, the V2 sim-
ulation has a cost per observation of 0.824 (see Table 2). This cost
improvement is reflected in the pCO2 scatter plot of Fig. 7a. While
there is still considerable scatter in the optimized solution (black
dots) compared to V1 (red dots), the V2 solution is closer to the diag-
onal, as captured by the scatter plot density contour lines. The RMS
difference between model and pCO2 observations is 63.4 ppm for the
V1 simulation and 58.5 ppm for the V2 simulation.

To verify this improvement with independent data we choose to
use DIC and alkalinity measurements for 2009 and 2010 from several
cruises obtained from the CLIVAR & Carbon Hydrographic Data Office
(CCHDO)4, as well as time-series data from Station ALOHA/Hawaii
Ocean Time series program (HOT) in the North Pacific subtropical
gyre (Karl and Lukas, 1996)5, Station “S”/Bermuda Atlantic Time se-
ries Site (BATS) in the North Atlantic subtropical gyre (Michaels and
Knap, 1996)6, and data from StationMunida and surroundings in Sub-
Antarctic Surface Water off the coast of New Zealand (Currie et al.,
2009).7 These data sets cover the entire depth of the water column
as compared to the surface pCO2 data we used to constrain our solu-
tions. For DIC (not shown) the model-data RMS difference is 322.2 µ
mol kg−1 for the CCSM and, virtually unchanged, 322.1µmol kg−1 for
the V2 simulations. Alkalinity (Fig. 7b) shows a reduced data-model
mismatch: the RMS differences are 48.8 µ mol kg−1 and 28.9 µ
mol kg−1 for CCSM and V2, respectively. This model-data reduction is
almost entirely (99%) due to the adjustment of initial alkalinity con-
ditions.

The global mean oceanic CO2 uptake for 2010 that was be-
tween 0.62 and 4.18 PgC yr−1 in the sensitivity runs has a value of
2.54 PgC yr−1 in the optimized run (Table 1). Note that we use a global
mean oceanic CO2 constraint of 2.4 ± 0.01 PgC yr−1, which forces this
global mean bias adjustment.

Another objective of the Green’s Function optimization was to re-
duce model drift. The Ocean Model Intercomparison Project (OCMIP
Orr et al., 1999, and updates) has set standards for model drift. For
air–sea carbon fluxes, for instance, they require models in equilib-
rium runs to drift not more than 0.01 PgC yr−1. As our runs are not in
a pre-industrial but a recent environment our carbon values have to
drift by definition. Alternatively, we choose to determine model drift
from oxygen and nitrate. While those vary due to changes in short-
term physical (i.e., temperature related solubility changes), as well
as interannual to decadal variability we determine their drifts from
additional model runs repeating the forcing for the year 2009 seven
times starting from the GLODAP (baseline) and the V2 (optimized)
2009 initial conditions. The resulting, volume-weighted drift for the
top 300 m of the global ocean is shown in Fig. 8. For nitrate, the drift
has been reduced by up to 12.5%, with the strongest drift reduction
in the upper part of the water column, while we found the strongest
drift reduction of more than 30% for oxygen in depths between 100

4 Through their website at http://www.cchdo.ucsd.edu.
5 http://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html.
6 http://bats.bios.edu/.
7 Kim Currie, New Zealand Institute of Water and Atmospheric Research, personal

communication.
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model forward calculations. Other recent model results from the
Community Climate System Model (CCSM-3) ocean Biogeochemical
Elemental Cycle (BEC) model (Doney et al., 2009) and an isopycnic
carbon cyclemodel (Assmann et al., 2010) show higher overall carbon
uptake in the Southern Ocean compared to the Takahashi et al. (2009)
Atlas. Although spatial patterns and amplitudes vary from model to
model, there is general agreement that the atlas underestimates the
carbon sink in the Southern Ocean. On the other hand, the carbon
uptake of the ECCO2-Darwin solutions in the Southern Ocean is on
the high end compared to most other models and to the climatology,
causing an overly pronounced amplitude of the seasonal cycle of the
globally integrated CO2 flux.

In other areas of the world ocean the ECCO2-Darwin solutions
were more consistent with other studies with differences only in
magnitudes. The equatorial outgassing in the Eastern Pacific of run
V2, for instance, has a shape similar to Doney et al. (2009), the val-
ues are closer to those shown by Assmann et al. (2010). The Northern
North Pacific in our model does not show the outgassing in the an-
nual mean that is found in the other two models as well as in the
climatology.

As we constrained our model to achieve a “target” global carbon
uptake of about 2.4–2.5 PgC yr−1, it needs to compensate for the
too strong carbon uptake in the Southern Ocean by weaker uptake
or intensified outgassing in other regions. The model achieves this
compensation mainly in the mid-latitude summers of both hemi-
spheres (compare Fig. 9). Additional Green’s Functions sensitivity
experiments will be required to “repair” these regional problems in
representing air–sea CO2 fluxes. Preliminary conclusions hint to the
air–sea gas exchange parameterization as well as the model treat-
ment of nutrient fields in combination with the parameterization
of biological production as the most likely candidates for the overly
strong Southern Ocean carbon uptake.

9. Concluding remarks

This proof-of-concept study has shown that the Green’s Func-
tion method can help adjust OBGCM model parameters and reduce
model-data mismatch. The existing ECCO2-Darwin solution remains,
however, preliminary in many ways. Future investigations should be
directed to address the following set of improvement possibilities.

First, we only used a very small set of observational data to con-
strain the simulation. Adding data constraints from observed, full-
depth profiles of DIC, alkalinity, and oxygen and the utilization of
remotely-sensed products like chlorophyll and other satellite-derived
biological or biogeochemical quantities will vastly expand the num-
ber of data constraints.

Second, we used a very small number of control parameters;
only sevenmodel sensitivity experiments (or Green’s Functions)were
used in the optimization. Forward-model sensitivity experiments
varying additional model parameters will lead to additional control
parameters for the optimization. As mentioned before, physical and
biogeochemical properties of these sensitivity experiments do not
necessarily have to be realistic. The combination with the data con-
straints leads to an optimized realization of reality. In this sense, more
variety will lead to results that are closer to reality. For example, we
are exploring the creation of new sets of biogeochemical initial con-
ditions that will expand the control parameter space. One specific
set of initial conditions that we are taking into consideration is the
construction of self-consistent data sets of DIC alkalinity, and den-
sity. We plan to enforce this self-consistency by assuming that the
biogeochemical fields correlate with density and by estimating their
variation through regression. This method has been used successfully
in regional ocean modeling studies (Gruber et al., 2012; Lachkar and
Gruber, 2012).

Third, the model parameterizations, especially with regard to
the choice of phytoplankton species and air–sea exchange piston

velocity, can be evaluated in greater detail and adjusted to observa-
tions. In particular, there are strong indications that the Wanninkhof
(1992) quadratic dependence of air–sea flux on the wind speed may
be exaggerating spatio-temporal variability of ECCO2-Darwin air–sea
gas exchange. For this reason, we are exploring a piston velocity for-
mulation that is closer to linear, e.g., as in Krakauer et al. (2006).

Lastly, a limitation of the Green’s Function approach discussed
herein is that computational cost increases linearly with the num-
ber of control parameters. Using this approach for detailed regional
adjustments in the global simulation would be impractical. For this
reason, we are also exploring the application of the adjoint method
to the ECCO2-Darwin model. This strategy is similar to that adopted
by the ECCO2 project, whereby preliminary model adjustments were
carried out using a Green’s Function approach while the adjoint
method was subsequently used to further fine tune the solution.
The cost of the adjoint method, while substantial, is largely inde-
pendent from the number of control parameters; hence it is pos-
sible to simultaneously adjust a large number of control parame-
ters. For example, in the ECCO2 physical-ocean optimizations, some
two billion model parameters have been adjusted using the adjoint
method. For ECCO2-Darwin, we plan to adjust the initial and sur-
face biogeochemical boundary conditions in order to fit the available
observations.

Despite the caveats listed above and the preliminary nature of the
ECCO2-Darwin simulation, the present study nevertheless remains
an important first step towards more realistic air–sea CO2 exchange
estimates for the NASA CMS Flux project as well as for the underlying
physical, biological, and chemical processes that drive these air–sea
fluxes. Of particular note is the fact that Green’s Function optimiza-
tion was able to reduce the drift of the optimization (Fig. 8) while also
substantially reducing the model data differences both vs. observa-
tions used as constraints (Table 2 and Fig. 7a) as well as independent
observations (e.g., Fig. 7b).
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Appendix A. Description of sensitivity experiments

The initial conditions that distinguish the sensitivity experiments
were created by interpolating the data sets described below to the
ECCO2 cube sphere grid. An overview of the parameterizations and
initial conditions used in the integrations is given in Table 1.

CCSM experiment: The CCSM experiment is identical to V1 except
that we use two complete years, 2009 and 2010, of ECCO2 physical
ocean forcing. For V1, only 16 months of ECCO2 forcing was available
so we padded the last 8 months of 2010 with JRA-25 forcing. The ini-
tial conditions for DIC, alkalinity, and oxygen were taken from a re-
alization of the Community Climate System Model (CCSM-3) ocean
Biogeochemical Elemental Cycle (BEC) model (Doney et al., 2009;
Lovenduski et al., 2007). More details can be found in the description
of V1 in Section 3.1.

GLODAP baseline experiment: For the GLODAP experiment the ini-
tial conditions for DIC and alkalinity were taken from the Global
Ocean Data Analysis Project (GLODAP) annual mean climatology pro-
vided by the Carbon Dioxide Information Analysis Center (CDIAC; Key
et al., 2004). These GLODAP data represent measurements taken in
the 1990s. We nevertheless used them unaltered, that is, without an-
thropogenic correction, to create a contrast to the KS experiment, for

… but there were indications of trouble in ECCO-Darwin paradise L

Ott et al., 2015

Brix et al. 2015 (fineprint)
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al. 2018)
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Perturbation 
Pair 
(simulation, 
baseline) 
 

Perturbation 
Experiment 

Piston 
Velocity 
Formulation 

Biogeochemical 
Initial Conditions 

Parameter 
(initial, perturbed, 
optimized) 

Linear 
Combination 
Coefficient 

Cost per 
Observation 

1, N/A Linear piston 
velocity Linear Brix et al. (2015) V2 N/A 0.08802 0.35067 

2, 1 Iron dust solubility 
reduced by 20% Linear Brix et al. (2015) V2 1, 0.8, 0.92734 0.36328 0.35023 

3, 1 
Initial conditions 
set to January 
1996 

Linear Simulation #2 
January 1996 N/A -0.17383 0.35527 

4, 1 
Initial conditions 
set to January 
1998 

Linear Simulation #2 
January 1998 N/A -0.27747 0.35926 

5, 12 Quadratic piston 
velocity Quadratic Simulation #2 

January 1996 N/A 0.011553 0.35564 

6, 12 

DIC and alkalinity 
initial conditions 
increased by 150 
mmol C m-3 and 
150 mmol eq. m-3, 
respectively 

Quadratic 

Simulation #2 
January 1996 with 
adjusted 
DIC/alkalinity 

N/A -0.0059469 0.24431 

7, 12 

DIC and alkalinity 
initial conditions 
from GLODAPv2 
climatology 

Quadratic 

Simulation #2 
January 1996 with 
GLODAPv2 
DIC/alkalinity 

N/A -0.21831 0.13334 

8, 12 

NO3, PO4, SiO2, 
O2, DIC, and 
alkalinity initial 
conditions from 
GLODAPv2 
climatology 

Quadratic 

Simulation #2 
January 1996 with 
GLODAPv2 NO3, 
PO4, SiO2, O2, DIC, 
and alkalinity 

N/A 0.044263 0.11712 

9, 12 
Iron scavenging 
rate increased by 
500% 

Quadratic 

Simulation #2 
January 1996 with 
GLODAPv2 NO3, 
PO4, SiO2, O2, DIC, 
and alkalinity 

3, 15, 9.3208 0.52673 0.11510 

10, 12 

Particulate 
inorganic carbon 
to particulate 
organic carbon 
ratio increased by 
20% 

Quadratic 

Simulation #2 
January 1996 with 
GLODAPv2 NO3, 
PO4, SiO2, O2, DIC, 
and alkalinity 

0.04, 0.048, 0.041914 0.23927 0.11689 

11, 12 

Small 
phytoplankton 
growth rate 
increased by 10% 

Quadratic 

Simulation #2 
January 1996 with 
GLODAPv2 NO3, 
PO4, SiO2, O2, DIC, 
and alkalinity 

0.7, 0.77, 0.69176  
 -0.11774 0.11949 

12, N/A 

Large 
phytoplankton 
growth rate 
increased by 10% 

Quadratic 

Simulation #2 
January 1996 with 
GLODAPv2 NO3, 
PO4, SiO2, O2, DIC, 
and alkalinity 

0.4, 0.44, N/A 0.56397 0.11547 

13, 12 
Diatom 
palatability 
increased by 0.1 

Quadratic 

Simulation #2 
January 1996 with 
GLODAPv2 NO3, 
PO4, SiO2, O2, DIC, 
and alkalinity 

0.85, 0.95, 0.84562 -0.043787 0.11901 

14, N/A Optimized 
Solution Quadratic 

Linear combination of 
initial conditions 
shown above 

Optimized values shown 
above N/A 0.11148 

All simulations used in 
the ECCO-Darwin v4 
Green’s Function’s 
optimization.

Orange, blue, and green 
rows show the first-
guess baseline, baseline, 
and final optimized 
simulation, respectively.

93% cost reduction from trial and error,
not Green’s Functions optimization.
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 400 
 401 
Figure 1. Long-term mean global air-sea CO2 fluxes for (a) Tak09, (b) Röd13, (c) Land13, and 402 
(d) ED. Positive values represent outgassing (red); negative values show uptake (blue). Tak09 is 403 
referenced to year 2000; Röd13, Land13, and ED are time-averaged from January 1995 to 404 
December 2017. Regions north of 80qN in Tak09, Röd13, and Land13 are excluded due to data 405 
sparsity. 406 
 407 

Mean global air-sea
CO2 fluxes for:
(a) Takahashi 2009,
(b) Rödenbeck 2013
(c) Landschützer 2013
(d) ECCO-Darwin v4.

Positive values represent 
outgassing (red);
negative values show 
uptake (blue).

Tak09 is referenced to 
year 2000;

Röd13, Land13, and ED 
are time-averaged from 
January 1995 to 
December 2017.

Regions north of 80N in 
Tak09, Röd13, and 
Land13 are excluded due 
to data sparsity.
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 408 
 409 
Figure 2. Long-term mean surface ocean pCO2 for (a) Tak09, (b) Röd13, (c) Land13, and (d) 410 
ED. Tak09 is referenced to year 2000; Röd13, Land13, and ED are time-averaged from January 411 
1995 to December 2017. Regions north of 80qN in Tak09, Röd13, and Land13 are excluded due 412 
to data sparsity. 413 
 414 
 415 
 416 
 417 
 418 
 419 

Mean surface ocean
pCO2 fluxes for:
(a) Takahashi 2009,
(b) Rödenbeck 2013
(c) Landschützer 2013
(d) ECCO-Darwin v4.

Tak09 is referenced to 
year 2000;

Röd13, Land13, and ED 
are time-averaged from 
January 1995 to 
December 2017.

Regions north of 80N in 
Tak09, Röd13, and Land13 
are excluded due to data 
sparsity.
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 420 
 421 
Figure 3. Long-term mean air-sea CO2 flux for Tak09 (orange), Röd13 (red), Land13 (green), 422 
and ED (blue) as a function of latitude. Air-sea CO2 fluxes are zonally-averaged in 1º bins. 423 
Positive values represent outgassing and negative values are uptake; black horizontal dashed line 424 
shows zero flux. Top panel and shaded error bars in bottom panel show zonal variability (one 425 
standard deviation). Tak09 is referenced to year 2000; Röd13, Land13, and ED are time-426 
averaged from January 1995 to December 2017. Regions north of 80qN in Tak09, Röd13, and 427 
Land13 are excluded due to data sparsity. 428 
 429 
3.2 Biome-scale Seasonality 430 
 431 

We now zoom into the biome scale and examine the seasonal cycle of air-sea CO2 flux 432 
(Figure 4) and surface ocean pCO2 (Figure A2). For a description of the biomes used in this 433 
section see Figure A1. Additionally, monthly climatological fields of air-sea CO2 flux and 434 
surface ocean pCO2 for ED and the interpolation-based products is shown in Supporting 435 
Information Figures S2 and S3, respectively.  436 

 437 
In terms of the amplitude and phase of the seasonal cycle, we find the closest agreement 438 

between ED and the interpolation-based products in the Pacific, Atlantic, and Indian subtropical 439 
permanently-stratified biomes (STPS, biomes 4, 7, 11, 13, and 14) and seasonally-stratified 440 
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Global Ocean Jan 1995– 
Dec 2000 

Jan 2000– 
Dec 2005 

Jan 2005– 
Dec 2010 

Jan 2010– 
Dec 2015 

Jan 2015– 
Dec 2017 

Jan 1995– 
Dec 2017 

GCP 2018 -1.94 r 0.59 -2.01 r 0.66 -2.22 r 0.57 -2.43 r 0.62 -2.57 r 0.57 -2.21 r 0.76 
Röd13 -2.39 r 0.23 -2.43 r 0.49 -2.52 r 0.17 -3.05 r 0.18 -3.09 r 0.30 -2.66 r 0.41 
Land13 -1.85 r 0.18 -1.84 r 0.27 -2.45 r 0.16 -2.69 r 0.07 -2.85 r 0.07 -2.29 r 0.45 
ED -1.93 r 0.16 -2.33 r 0.35 -2.55 r 0.11 -2.83 r 0.30 -3.29 r 0.17 -2.52 r 0.49 
 606 
Table 2. Time-averaged global ocean air-sea CO2 fluxes for the GCP, Röd13, Land13, and ED. 607 
All values represent uptake; units are in Pg C year-1. Values represent temporal mean r one 608 
standard deviation due to interannual variability; grey cells show mean values from January 1995 609 
to December 2017. Röd13 and Land13 were adjusted for the pre-industrial ocean source of CO2 610 
from river runoff by adding a CO2 sink of 0.78 Pg C year-1. Error estimates for the GCP ocean 611 
sink include additional uncertainty (0.5 Pg C year-1) computed from an ensemble of OBMs.  612 
 613 
 614 

 615 
 616 
Figure 6. Globally-integrated air-sea CO2 flux time series for the GCP ocean sink (black line 617 
with uncertainty shown as gray shading), Röd13 (red line), Land13 (green line), and ED (blue 618 
line). Air-sea CO2 fluxes are annual means; all values represent uptake. Thin grey lines show the 619 
individual OBMs used to compute the GCP ocean sink. Röd13 and Land13 were adjusted for the 620 
pre-industrial ocean source of CO2 from river runoff by adding a CO2 sink of 0.78 Pg C year-1. 621 
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Appendix A 760 
 761 

 762 
 763 
Figure A1. Fay and McKinley (2014) biomes used to compute area-weighted mean surface 764 
ocean pCO2 and spatially-integrated air-sea CO2 fluxes. 765 
 766 
 767 
 768 
 769 
 770 
 771 
 772 

Fay and McKinley (2014) 
biomes used to compute 
area-weighted mean 
surface ocean pCO2 and 
spatially-integrated air-
sea CO2 fluxes.
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 485 
 486 
Figure 4. Seasonal cycle of air-sea CO2 flux for Tak09 (orange), Röd13 (red), Land13 (green), 487 
and ED (blue) in each biome. Air-sea CO2 fluxes are time-averaged for each month (January 488 
1995 to December 2017) and spatially integrated across each biome. 489 
 490 

 491 
 492 
 493 
 494 
 495 
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Figure A1. Fay and McKinley (2014) biomes used to compute area-weighted mean surface 764 
ocean pCO2 and spatially-integrated air-sea CO2 fluxes. 765 
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Figure A1. Fay and McKinley (2014) biomes used to compute area-weighted mean surface 764 
ocean pCO2 and spatially-integrated air-sea CO2 fluxes. 765 
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 552 
 553 
Figure 5. Air-sea CO2 flux time series for Röd13 (red), Land13 (green), and ED (blue) in each 554 
biome. Air-sea CO2 fluxes are spatially integrated across their respective biomes. Positive values 555 
represent outgassing; negative values are uptake. Thin lines show monthly values and thick lines 556 
show interannual variability (12-month forward running mean). 557 

 558 
 559 
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 790 

 791 
 792 
Figure A4. Monthly time series of surface ocean fCO2 for SOCATv5 (black) and corresponding 793 
ED values (red) taken at the same time-space locations. Median monthly values for each biome 794 
are shown. Adjacent monthly values without data gaps are connected with solid lines. 795 
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Figure A1. Fay and McKinley (2014) biomes used to compute area-weighted mean surface 764 
ocean pCO2 and spatially-integrated air-sea CO2 fluxes. 765 
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Monthly time series of surface ocean fCO2 for Surface 
Ocean CO₂ Atlas (SOCAT) v5 (black) and corresponding
ECCO-Darwin v4 (red) taken at same time-space locations. 
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 818 
 819 
Figure A5. Number of observation-model surface ocean fCO2 points per month for each biome. 820 
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Figure A1. Fay and McKinley (2014) biomes used to compute area-weighted mean surface 764 
ocean pCO2 and spatially-integrated air-sea CO2 fluxes. 765 
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Number of observation-model surface ocean 
fCO2 points per month for each biome.





Summary and concluding remarks

• ECCO-Darwin v4 produces air-sea CO2 fluxes that exhibit broad-scale consistency with 
interpolation-based products, particularly in the subtropical and equatorial biomes.

• The largest differences between estimates in long-term ocean CO2 uptake occur in subpolar 
seasonally-stratified biomes, where ECCO-Darwin produces stronger winter uptake.

• Compared to the Global Carbon Project (GCP) ocean biogeochemistry models, ECCO-Darwin 
has global CO2 sink (time-mean of -2.52 ± 0.49 Pg C year-1) and interannual variability that is 
more consistent with the interpolation-based products.

• Contrary to interpolation-based products, ECCO-Darwin is less sensitive to sparse and uneven 
observational sampling and it permits full attribution of the inferred air-sea CO2 flux 
spatiotemporal variability.



/ [MITgcm] / MITgcm_contrib / ecco_darwin

Index of

/MITgcm_contrib/ecco_darwin
Files shown: 2
Sticky Tag:  Set

File Rev. Age Author Last log entry

 Parent Directory
    

v2_cs510_Brix/
    

v3_cs510_Brix/
    

v3_cs510_latest/
    

 v4_llc270/     
 v5_llc270/     

readme.txt
 1.2  3

weeks
 dcarroll   Updated readme.txt to include ECCO-Darwin team

development process
 tag-index  1.2  3

weeks
 dimitri   To make initialization and pickups more robust: - remove

pickupSuff from data …

 ViewVC Help
Powered by ViewVC 1.1.22  

ECCO-Darwin v4 model output on NAS portal
https://data.nas.nasa.gov

Instructions for rerunning on MITgcm CVS server: 
http://wwwcvs.mitgcm.org/viewvc/MITgcm/

Preprint available @ https://tinyurl.com/y5p539s6

https://data.nas.nasa.gov/
http://wwwcvs.mitgcm.org/viewvc/MITgcm/
https://tinyurl.com/y5p539s6


Surrender?  We have not yet begun to fight!


