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Main Points from Lecture 1

1)

2)

3)

4)

5)

ECCO Summer School 2019

State estimation (data assimilation) is L
mathematically an inverse problem, - H

Inverse problems with data are invariably ill- _:A
posed and do not have a solution in a strict
mathematical sense,

by imposing certain criteria that define what is optimal (best) (e.g.,

Minimum length, Minimum variance, Least-squares),

Minimum variance and least-squares are equivalent,

State estimation problems are too large to directly apply basic inverse

methods (e.g., SVD);

observation

H

I -G

A 1 \_G

N

model equations
Particular (optimal, best) solutions to inverse problems can be obtained

10-years of Argo T : 3000-flts X 50-depths X 36 X 10=54e6
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10-years of Jason : 6700s X 127-rev X 2/3 X 36 X 10=204e6
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Outline

2. Methods of state estimation (this lecture)

Kalman filter, Rauch-Tung-Striebel smoother,
Adjoint method,

3. Practical Matters (Saturday)

Error estimation, representation error, covariance,
approximate Kalman filters, other data assimilation
methods (Optimal Interpolation, 3DVAR).
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Kalman Filter

Kalman filter is a
minimum variance estimator
that inverts observations
recursively in time.

. . . . estimation
A filter, in estimation observation
theory, is an estimator -

P time

that employs — /\Y ‘
observations that are ' N |
! I I
0

formally in the past.
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Derivation of Kalman Filter

Observations ~ H(t)x(t)=y(t)

Model  x(t)=Ax(t-1)+Gu(t—1)

Suppose we have an optimal (minimum variance)
estimate at time 7—1 , X(#—1) , that uses all data up to
that time with error covariance P(7—1). How do we get
an optimal estimate at the next instance ¢ using y(t) ?

“_7indicating — TN\ process noise/
estimate without use Model X(t'_) = Ax(t—1)+Gu(t—1) control error
: (includes errors in
of data at that instant Its error 5?{(t,—):A5§((t—1)+G5ﬁ(t—1) the model

equation)
Error covariance Pp(t,—)= <5§<(t»_) 5&(t’_)T>

o A )
etc =AP(t—1)AT+GQ(t—(1)GT QE<5u5ur>

ECCO Summer School 2019 State Estimation 2 (I.Fukumori) 5



Derivation of Kalman Filter

Model prediction  X(t,—)=AX(t-1)+Gu(t—1)
=AP(t-1)A" +GQ(t-1)G’

“—~"indicating
estimate without use P(t'_)
of data at that instant === '

Now seek a linear estimate ~ X(t)=Lx(t,—)+Ky(¢t) /. true state

/H(t)i(t)+n(t):§r(t)

Then (%(t))=L(%(t,~))+K(HX(t)+n(t))=(L+KH)(X(t))

Thus, for the estimate to be unbiased, L+KH=1 or L=I-KH

I-KH)X(t,-)+Ky(t)

(6-)+K (¥ (¢)-HR(¢,-))

>
VN
(‘r
~
[l
—_

Il
o
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Derivation of Kalman Filter

Choose K that minimizes error variance of X(t)
X(t)=(I-KH)x(¢t,—)+Ky(t)
Error  6x(t)=(I-KH)5x(t,—)+Kon(t)
Error covariance
P(t)=(ox(c)ox(e))

(AB);:CBTAT <:(I—KH)<5x(t,—)5x(t,—)T>(l—KH)T+K<§n(t)5n(t)T>KT

assuming <5x(t,—)5n(t)T> =0

= (1-KH)P(t,~)(I-KH) +KR(t)K"
—P-KHP-PH'K" + KHPH'K" + KRK"
"completing ( =K(HPH" +R )K" ~PH'K" ~KHP +P

the square” 1

_ [K —PH' (HPH" +R) }(HPHT + R)[K _PH' (HPH' + R)_T

~PH' (HPH' + R)_l HP + P
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Summary of Kalman Filter Algorithm

1) Integrate model until the next set of observations (forecast step)

%(t,~)=A%(t-1)+Gi(t-1) P=(o%5%")
P(t,~)=AP(t-1)A"+GQ(t-1)G’ QE<5ﬁ5ﬁT>
msngnae f R=(5(y-HR)5(7-HR)')

that instant
2) Update model state with the new observations (correction/tep)

X(t) = %( (¢) [3() - HOX(-)]
“ain® K(t)zp(t,—m(t) [H< P ( ) e )T
P(t)=P(t,~) - P(t,-)
=P(t,~) - K(t)H(t)P(t'_)

3) Return to 1) to step forward in time.
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Properties of Kalman Filter

Forecast  x(t,—)=Ax(t-1)+Ga(t-1)

Correction  X(t) = X(t.-) + K(¢) [§(¢) - H(e)%(¢,-) ]

1) The Kalman filter defines a recursive relationship in time of
model state X(t) and its error covariance P(t) (i.e., Kalman
filter explicitly computes formal uncertainties),

2) The equations besides those of the state X(t) are what’s
needed to form the Kalman gain K (t),
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Properties of Kalman Filter

Forecast  x(¢t,-)=Ax

Correction  X(t)

3) Schematic illustration of Kalman filtering of the state;

y(t)

4) Each observation y is used once, only at the time of
measurement,

ECCO Summer School 2019
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Properties of Kalman Filter

Forecast  x(t,—)=Ax(t-1)+Ga(t-1)
(

Correction  X(t)

5) The Kalman gain ( ) corresponds to an inversion of observation H( )
Write  X(t)=%(¢t,—) + o%(t,—) then H(t)[f{(t,— + OX(t } ~y(t
ie, H(t)ox(t,—)=y"  where y'=y(t)-H(t)x(¢t,—)

-1
. . : : -l 5 T T ~
Minimum variance inversion ~ EX =y x=R_E (ERXXE + Rnn) y

Therefore, by inverting H(t)

5%(¢) = Pt () [HOPE-)HE) +R(E)]

which is the Kalman filter.

ECCO Summer School 2019 State Estimation 2 (I.Fukumori) 11



Properties of Kalman Filter

Forecast  x(t,—)=

Correction  X(t) = X(t.-) + K(¢) [§(¢) - H(e)%(¢,-) ]

6) As the Kalman filter only inverts observations H, its result is
not an optimal solution to the entire state estimation problem.

11 e X, yt
H ol X ym
Cor s ik, A
- A 1 -G el 0
-A 1 -G - |lu,, 0

ECCO Summer School 2019 State Estimation 2 (I.Fukumori) 12



Properties of Kalman Filter

Forecast x(t,—)=A%(t-1)+Gu(t-1)
P(t,~)=AP(t- )AT+GQ( ) G'
Correction x(t) = x(t,-) (t) [¥(t) x(t,-)]
K(t)=P(t,-)H ()[ (t)P(u—)H() +R(0)[

P(¢)

P(t,-) — K(¢)H(¢)P(t,-)
7) In fact, the filtered solution does not satisfy the model;

%(t) = AX(¢-1)+Gh(t-1) + K(t) [9(t) — H(t){A%(t-1)+Gh(t-1) }}

state
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Summary of Kalman Filter

a) Kalman filter is a minimum variance estimator of the model state
that inverts observations recursively in time,

state

b) Filtered solutions do not satisfy the model and are thus not
optimal solutions to the full state estimation problem.

estimation
observation

A reason for this limitation is the
estimate’s inconsistent use of data;
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Rauch-Tung-Striebel Smoother

Rauch-Tung-Striebel (RTS) smoother is a
minimum variance estimator
that corrects the Kalman filter estimate
by inverting the model recursively in time
using formally future data.

Fixed-interval

estimation smoother
A smoother , in estimation observation  —
thelory, Isban esttl.matciLt?at /’ R \ >
employs observations that are ~
both formally in the future as — {a \ \\I -~
[ ] .
well as the past. I | » time
filter
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Derivation of RTS Smoother

Observations H(t)x(t) zfr(t)
Model x(t)=Ax(t—1)+Gu(t-1)
Suppose we have an optimal (minimum variance) estimate at
time r—1 , f((t—l) , that uses all data up to that time with

error covariance P(7—1). How do we optimize %(7-1)
and (z—1) using the new data y(¢) ?

“+” to indicate estimates

using future data \

Seek a linear estimates t—1,+)=Dy(t)+Ex(t—1)+Fa(t-1)
t—1,+)=D'y(t)+E%(t—1)+Fua(t-1)

J
a(
An unbiased estimate requires E=I-DHA & F=-DHG

and likewise E'=-D'HA & F' =I-D'HG

ECCO Summer School 2019 State Estimation 2 (I.Fukumori)
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Derivation of RTS Smoother

An unbiased estimate requires certain relationships among the coefficients.

(%(t-1,4))=D(y(t))+E(X(c - 1))+ F(li(t - 1))
=D(Hx(t)+n(t))+E(X(t - 1))+ F(d(c 1))
)

=D(H[ Ax(t-1)+Gu(t-1) |+ n(t))+ E(X(t - 1))+ F(d(t 1))
=(E+DHA)(x(t-1))+(F+DHG){u(t-1))
Then E+DHA=1 and F+DHG=0

and therefore E=I-DHA & F=-DHG
X(t-1,+)=Dy(¢t)+(I-DHA)X(t—1)-DHGu(t-1)
=%(t—1)+D| §(t)-H{AX(t-1)+Gia(t 1)}
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Derivation of RTS Smoother

X(t-1,+)=Dy(t)+(I-DHA)X(t—1)-DHGu(t—1)
u(t—1,+)=D'y(t)-D'HAX(t-1)+(I-D'HA)u(t—1)
Choose D and D’ that minimize the error variance of the new estimates.

6%(t—1,+)=Don(t)+(I-DHA)SX(t —1)-DHGSu(t - 1)

P(t_1’+):<5x(t_1,+)5X(t—1,+)T> /P(tr_)ZAP(t—l)AT+GQ(t_1)GT
=(I-DHAJP(t-1)(I-DHA)' +DHGQ(t~1)(DHG) +DR(¢)D’

( =D| HP(t,-)H" +R(t) D" ~P(t —1)A"H'D" —DHAP(t 1) +P(t 1)

= [D—P(t ~1)ATH" (HP(t,~)H" + R(t))_l}(HP(t,—)HT +R(t))[D--]

“completing

the square” ~P(t—1)AH (HP(t,-)H +R(¢t)) HAP(¢—1)+P(t-1)
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Derivation of RTS Smoother

Thus, i x(t—1,+) :f((t—1)+D[)A’(t)—H{A’A((t_1)+Gﬁ(t_1)}]

< D=P(t-1)A"H'[HP(t,)H" +R(t)]

| P(t=1,+)=P(t-1)-P(t~1)A"H' [HP(t,-)H" +R(t) | HAP(¢-1)

These can be simplified using results of the Kalman filter;
X(t,—)= Ax(t 1)+Gu(t 1)

x(t) = %( £) [9() X(t,-) ]
K(t)=P(t»—)H(t)T [H(t)P(t»—)H( ) + R(t )T
As i X(t-1,+)=%(t—1)+L(¢ [x ]

< L(t)=P(t-1)A"P(t,-)"
P(t—1,+)=P(t—1)+L(t)[P(t)-P(t,)]L(t)

\.
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RTS Smoother Algorithm

Smoothed estimate indicated with
/ !” +” to note use of future data
By recursion X(t-1,+)=%x(t-1)+L [&(t,+)—§((t,—)]
L(t)=P(t-1)A"P(t,-)"
P(£=1,+)=P(t~1)+L(¢)[P(t,+) =P L (e)

similarly, a(t—1,+)=0(c-1)+M(6)[ %(t,+)-%(t,-) ]
M(t)=Q(t—-1)G'P(t,-)"
Q(t-1,+)=Q(t—-1)+M(t)[P(t,+)—P(t,—)|M(t)

T

which can be iterated backward in time and is called the
Rauch-Tung-Striebel Smoother.
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Properties of RTS Smoother

State X(t—1,4+)=x(t—1)+L(t) X(t,+)—-%(t,~) ]
L(t)=P(t-1)A"P(t,-)"
P(t—1,+)=P(t—1)+L(¢)[P(t,+) - P(t,-)]L(t)"

Control ~ W(t-1+)=a(t-1)+M(t)| X(t,+)-%(¢,-) |
M(t)=Q(t—1)G'P(t,-)"
Q(t—1,4+)=Q(t —1)+M(t)[P(t,+) - P(t,)]M(¢t)"

1) RTS smoother algorithm defines a recursive relationship backward in
time of smoothed model state X(+) and control u(+), along with
their error covariances P(+) and Q(+), respectively,

2) Elements of the recursion are results from the Kalman filter;
i.e., RTS smoother is correcting results from the Kalman filter,

3) The smoothed error covariances P(+) and Q(+) are not used in
deriving the smoothed state X(+) and control 1(+).
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Properties of RTS Smoother

State X(t—1,4+)=x(t—1)+L(t) X(t,+)—-%(t,~) ]
L(t)=P(t-1)A"P(t,-)"
P(t—1,+)=P(t—1)+L(¢)[P(t,+) - P(t,-)]L(t)"

Control (e -1,4) = (e -1)+ M(t) [ X(t,+) - %(t,-) |
M(t)=Q(t-1)G"P(t,-)"
Q(t-1,+)=Q(t ~1)+M(¢)[P(,+) - P(t,-)|M(¢)

4) Smoother gains L(t) and M(t) correspond to inversions of
model matrices A and G, respectively.

As P(t,—)=AP(t-1)A" +GQ(t-1)G’

P(t—1)A"[ AP(t—1)A’ +GQ(’f—1)GT]_1

L(¢)

M(t)

Q(t-1)6"[GQ(t-1)G" +AP(t-1)A" |

o -1
Minimum variance inversion EX+n=y X= RXXET (ERXXET + Rnn)

Model 6x(t)=Adx(t—-1)+Gsu(t—-1)

ECCO Summer School 2019 State Estimation 2 (I.Fukumori)
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Properties of RTS Smoother

State X(t-1,+)=%

Control a(t—1,+)=a(t—1)+M(t)| X(t,+)-%(t,) |
M(t)=Q(t—1)G'P(t,-)"
Q(t—1,4+)=Q(t —1)+M(t)[P(t,+) - P(t,)]M(¢t)"
5) The smoothed solution is consistent with the model.
AX(t—1,+)+Gu(t—1,+) = AX(t — 1)+ AL| X(t,+)—%(t,—) |+
Gi(t—1)+GM| X(t,+)-%(t,-) ]
= AX(t-1)+Gil(t —1)+(AL+GM)| X(t,+)-X(t,—) | =%(t,+)
Noting
AL+GM=AP(t-1)A"P(t,~) +GQ(t-1)G"P(t,~)"
=[AP(t-1)A" +GQ(t-1)G" |P(t,-) " and x(t,—)=Ax(t-1)+Gua(t-1)
=P(t,-)P(t,-) =I
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Properties of RTS Smoother

State X(t—1,4+)=x(t—1)+L(t) X(t,+)-%(t,~) ]
L(t)=P(t-1)A"P(t,-)"
P(t—1,+)=P(t-1)+L(¢t)[P(t,+)—P(t,-)]L(t)"

Control (6 =1,+)=0(t—1)+M(¢)[ X(t,+)-%(¢,-) ]
M(t)=Q(t—1)G'P(t,-)"
Q(t—1,4+)=Q(t —1)+M(t)[P(t,+) - P(t,)]M(¢t)"

6) Schematic illustration of RTS smoothing in relation to Kalman
filtering; y(t)

state Kalman filtering

time
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Properties of RTS Smoother

State X(t-1,4+)=%(t-1)+L I:ﬁ(t,+)_§((t,_)]
L(t)=P(t-1)AP(t,-)"
P(t—1,+)=P(t-1)+L(¢t)[P(t,+)—P(t,-)]L(t)"

Control (e =1,4) = (e -1)+ M(t) [ X(t,+) - %(t,-) |
M(t)=Q(t—1)G'P(t,-)"
Q(t—1,4+)=Q(t —1)+M(t)[P(t,+) - P(t,)]M(¢t)"

6) Schematic illustration of RTS smoothing;in relation to Kalman
filtering;

state

RTS smoothing

time
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Summary of RTS Smoother

a) The Rauch-Tung-Striebel (RTS) smoother is a minimum variance
estimator of the state and control that inverts the model
recursively backward in time correcting the Kalman filter estimate,

state

.
-

time
b) Smoothed estimates provide an optimal solution to the entire state
estimation problem.

H X, y,
H o Xt+1 §71+1
. . : . . x,, |= :
-A 1 -G u, 0
-A 1 -G u,,, 0
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Adjoint Method

Adjoint Method (aka 4DVAR) is a
least-squares method
that solves the entire estimation problem
Iteratively by descent optimization.

|

analytically

J=(y-Ex) R, (y-Ex)+x"R_'x

t=R_E"(ER_E'+R, ) §

ECCO Summer School 2019 State Estimation 2 (I.Fukumori)
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Description of Adjoint Method

yt+1

M
LR
D

|
>
[

|
=

In terms of least-squares, the estimation problem can be cast as finding a
state X(+) and control Ui(+) that minimizes the objective function,

]Eé §(c) - H()x(e, ) R()[5(c) - H(O)x(t,+)]
+[%(0,4)~%(0)] P(0)"[%(0,+) —&(o)]

# 2 [a(e)-a(0)] () [a(er) i ()]
e T a3 [R(6) AR 1) -Ga(e 1]
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Description of Adjoint Method

Distinction between “soft” and “hard”
constraints is artificial.

o (o) o (i

J=(y-Ex)W'(y-Ex) +(b-Ax)Q"(b-Ax)’

10/ Txar-1 T ~-1
—9__ _Ex)-A _A
o E'W (y x) Q (b x)

=(E'W'E+A'Q'A)x—(E'W 'y +A’Q"b)
Solving 0] /ox=0  we get

X

(E'WE+A'Q'A) (E'W 'y +A’Q'b)
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Description of Adjoint Method

Distinction between “soft” and “hard”
constraints is artificial.

e suvues ven (Shl2] (5932

J=(y-Ex)W (y - EX)T +uQ 'u’ -2pn’ (b—Ax—u)

19 . -0 ) S~ Lagrange
Ea_u:Q u+p > p=-Q'u multipliers
lg:b—Ax—u =0 > u=b-Ax

2 O

LY _pw (y—Ex)+A’n =% _E'W (y—Ex)-A"Q (b—Ax)=0
20x (y-Ex)+A'n (y-Ex)-A'Q" (b-Ax)=

(E'WE+A"Q'A)x~(E'W 'y +A’Q'b)=0
Therefore,
X =

(E'WE+A'Q'A) (E'W 'y +A’Q'b)
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Description of Adjoint Method

yt+1

M
LR
D

|
>
[

|
=

In terms of least-squares, the estimation problem can be cast as finding a
state X(+) and control Ui(+) that minimizes the objective function,

]Eé §(c) - H()x(e, ) R()[5(c) - H(O)x(t,+)]
+[%(0,4)~%(0)] P(0)"[%(0,+) —&(o)]

# 2 [a(e)-a(0)] () [a(er) i ()]
e T a3 [R(6) AR 1) -Ga(e 1]
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Description of Adjoint Method

1= [5(0) —HtﬁHTR ) [3(0) - H(OR(E)]
+[ %(0,+) - ] P(0)"[%(0,+) —x(o)]
+Z[u (e4)=(e) ] Q(e) " [a(e+)-a(0)]
—ZZu ) [X(t,+) —AR(t-1,+)-Gh(t—1,+)]

2 8ﬁ(t,+)

= [u (t.+)-0(t)]+G6n (t+1) =0 t=0,1,--,M-1
%8 f{t) —%(t,+) —AR(t-1,4)—Git(t—1,4)=0 £=1,- M

< %a&(@(]),+)_ ) [%(0,4)-%(0)]+A"(1)

%a&fz{,+)__ [y x(t,+)|-n(t)+Au(t+1)=0

\ %aﬁ(%,Jr):—H(M)TR(M)1B,(M) — H(M)’A‘(Mﬂr)]—p.(M):o

0
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Description of Adjoint Method

%aﬁ(a{,+)_ Mla(e+)-a(e)]+6p(e+1)  £=0,1,,M-1
%aﬂt):&(t,+) CAR(E-1,4)-Ga(t-1,4) t=1,-,M
2o~ KO -0+ A k()

v RORO ) - HORED]-RErARErY) =101
aaOy = O RO [3 () — H()R(M4)]- ()

1) A solution to aj/ap.(t) =0 is obtained by integrating the model from
initial condition t=0 to terminaltime t=M using a first guess for

initial condition X(0,+) and control u(t, +)
X(t,+) =AX(t—1,+)+Gl(t - t=1,--,M

which yields estimates for f((t,+) =1,---,M
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Description of Adjoint Method

%aﬁf{,+)_ (e +)-a(e)]+6p(e+1)  £=0,1,,M-1

v %ajét):&(t,+) CAR(E-1,4)-Ga(t-1,4)=0 t=14-M
;a&fg,+)=P<o>‘1[&(o,+>—f<<o>]+Am<1>
2= POTRE 0 - HORE]-RErABED) o=t
LT () R(M)"[§(M) - (M) (M,+)] (M)

/ 2 0%(M,+)

2) Asolutionto 0J /0X(M, +) =0 is obtained by choosing H(M) to be

n(M)=-H(M [y (M,+)]

ECCO Summer School 2019 State Estimation 2 (I.Fukumori)
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Description of Adjoint Method

%aﬁ(a{’Jr)=Q(t)_1[ﬁ(t,+)—ﬁ(t)}+GTu(t+1)T O M1
v %ajét)=f<(t,+) CAR(E=1,4)=Gh(t-14)=0 t=1,.M

2at0) "0 (RO -2(0]]+aTm(1)

%a,szﬁ)=—H(t>TR(t)‘1[9(t) ~H()R(6+)]-R(e)+ATR(E1) =1, M—1
v Sapmy O RO [ () ~ HR(,)] - ()=0

3) Asolutionto &J/0%(t,+)=0 ¢=1,--,M—1 is obtained by choosing M(t)
to satisfy

n(t)=A"n(t+1)-H(t) R(t) " [§(¢) - H(6)%(t,+)] t=M-1,-1

integrating this backward in time from t=M -1 to t=1 ,using u(M) from
step 2) as the terminal condition. A" corresponds to the adjoint of the model.
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Description of Adjoint Method

1 g

=Q(t) [a(e,+)-a(6)]+6™m(t+1)  £=0,1,-,M~1

E@ﬁ(t,+)
19 ) )
v / =x(t,+) —AX(t-1,+)-Gu(t-1,+)=0 t=1,--,M

20p(t)
[ 2o =" O KO 0]+ Ak (1)
1 g
Eaf((t,+)_
v %a&((j\{[,Jr)=—H(M)TR(M)_1[§I(M) - H(M)%(M,+)|-p(M)=0

|

4) The solution obtained by 1) to 3) will, in general, not make the last two
gradients zero; i.e., it is not an optimal solution, yet.

v

However, these remaining gradients provide a direction in which to change

the initial guess of initial condition X(0,+) and control u(t,+) t=0,1,---,M -1
used in step 1) (i.e., modify the particular solution), so as to decrease the

value of J until it is at a minimum and these gradients zero;

e.g., steepest descent method.

ECCO Summer School 2019 State Estimation 2 (I.Fukumori) 36



Description of Adjoint Method

Descent Optimization

Steepest Descent Method

isopleths of J \

Second Derivative Methods

e.g., Conjugate-Gradient Method
Quasi-Newton Method
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Steps of Adjoint Method

1) Start with particular state X(0,+) and control u(t,+), t=0,--,M-1
2) Integrate model from initial time =0 toendtime t=M

X(t,+) =A%(t—1,+)+Ga(t—-1,+)
3) Compute Lagrange multiplier at end time t=M
w(M)=-H(M) R(M)"[§(M) ~ H(M)%(M,+)]

4) Integrate adjoint model from end time t=M to initial time t=0

n(t)=A"p(t+1)- [y x(t +)]
5) Evaluate cost gradients 8]/6x( ) and 8]/6u(t +) t=M-1,---,0
1 9 T
206 =Q(t [u (t.+)-0(t)]+G6n (t+1)
1 g T
zaﬁ(o,+) =P(0)"[%(0,+)-%(0)]+An(1)

6) Terminate if gradients in 5) (and/or cost | ) are negligible.
Otherwise, use these gradients in descent optimization to improve
the estimates in 1) and repeat the steps.
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Properties of Adjoint Method

w(t)=A"n(t+1)-H(t) R(c)"[9(¢) ()], =M=t
1 0 . )

26u(£+ - [u (t)}rG M(t+1) t=M-1,--0

1 g T

Ea&(o,+) =P(0)"[(0,+)-%(0) ]+ A" (1)

1) What is an adjoint?

An adjoint of a operator @ , denoted @, is an operator that satisfies
<(I>(u),v> _ <u,(I>* (v)>/ inner product

In linear algebra, adjoint corresponds to matrix transpose (conjugate
transpose);

<(Du,v> = (Cl)u)T v=u'®d'v= <u,(DTV>

Solutions to adjoints are intimately tied to solutions of the original
operators, and its appearance here is no accident. In fact, an adjoint
operator also results when the estimation problem is formulated in
continuous form, thus the identification here of A’ as the adjoint.
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Properties of Adjoint Method

w(t)=A"n(t+1)-H(t) R(c)"[9(¢) R(£4)], E=M-1-
1 A T

2(’3u(ai+ - [u (t)}rG M(t+1) t=M-1,--0

1 g T

Ea&(o,+) =P(0)"[(0,+)-%(0) ]+ A" (1)

2) The significance of the equations can be understood by recognizing
that the adjoint evaluates model’s sensitivity backward in time;

OF| x(t+N)] _ox(c+1)ox(t+2)x(t+3) OF| x(t+N)]
ou(t) ou(t) ax(t+1)8x(t+2) ox(t+N)

1

=G"(A )NlaF[XHN] / ) =Ax(t —1)+Gu(t —1)

Ox t+N

3) The adjoint equations are “forced” by the model-data misfits. The
adjoint variable u(t) (Lagrange multiplier) therefore is the
sensitivity of these misfits to the model state x(¢t) and the
“controls” u(t) at earlier instances.
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Summary of Adjoint Method

a) The adjoint method numerically solves the estimation problem by

least-squares, in which the model’s adjoint provides an efficient
means to compute the gradient of the least-squares objective
function for use in descent optimization,

Ifﬁ [3(6) - HOX(E4H)]R() () - HOX()] w(e)=AT(e+1)-H(e) R(¢) [§(t) - H()R(6,+)]
+£&1(0:+)—&<0A)] Pfo)l[f((i'+)_ﬁ((f)] \ %aﬁf{’+) =Q(¢) " [a(e,+)-a(6)]+6"p(e+1)
+§[u(t,+)—u(t)] Q(t) [a(t,+)-u(r)] 1 L A
2 (e) [R(64) —AR(t-1,4)~Gi(t-1,4)] 20%(0,+) =P [%(04)-%(0)J+ AT (1)

t=1

b) By construction, the adjoint method is a smoother equivalent to
the RTS smoother.

A
state
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Concluding Remarks on Estimation Methods

1) Kalman filter is a recursive minimum variance estimator that
inverts data up to each instant,

2) Kalman filter does not solve the entire state estimation problem,

3) Rauch-Tung-Striebel smoother is a recursive minimum variance
estimator that solves the entire estimation problem by inverting
the model to correct the Kalman filter estimate,

4) Adjoint method is a least-squares method that solves the entire

estimation problem using iterative descent methods by evaluating
the gradient of the least-squares problem with the model’s adjoint.
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Next Topic

1)

2)

3)

How does one apply these methods in practice?

What is data error? Rz<(§r - HX)(y - Hi)T>¢<(§r -y)(y —y)T>
. Representation error 1
. How is it prescribed?

How can a Kalman gain (smoother) be derived given a model?
P(t,—)=AP(t-1)A"+GQ(t-1)G’

e Approximate Kalman filters and smoothers
e Kalman-filter-like methods (e.g., optimal interpolation)

How is an adjoint derived given a model?

n(t)=A"p(t+1)-H(t) R(t)_l[fl(t) — H(t)%(t,+)]

E> Automatic Differentiation
(Patrick Heimbach)
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