
Source-to-source algorithmic differentiation

1ECCO Summer School 2019

Ian Fenty
ECCO Summer School

May 2019

MITgcm Model Code Snippet

2ECCO Summer School 2019

Two-step Adams–Bashforth calculation of RHS
Consider this arbitrary
linear operation found in
the MITgcm, calculating
the RHS of the AB2
equation:

subroutine adams_bashforth2(bi, bj, karg, ksize, gtracer, gtrnm1,
$ ab_gtr, startab, myiter, mythid)

subroutine adams_bashforth2_ad(karg, ksize, gtracer_ad,
$gtrnm1_ad, ab_gtr_ad, startab, myiter)

Forward

Adjoint

MITgcm Model Code Snippet

3ECCO Summer School 2019

Two-step Adams–Bashforth calculation of RHS
Consider this arbitrary
linear operation found in
the MITgcm, calculating
the RHS of the AB2
equation:

subroutine adams_bashforth2(bi, bj, karg, ksize, gtracer, gtrnm1,
$ ab_gtr, startab, myiter, mythid)

Found in the MITgcm forward routine:

MITgcm Model Code Snippet

4ECCO Summer School 2019

do j = 1-oly, sny+oly
do i = 1-olx, snx+olx
ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))
gtrnm1(i,j,k) = gtracer(i,j,k)
gtracer(i,j,k) = gtracer(i,j,k)+ ab_gtr(i,j)

end do
end do

Forward model snippet

Two-step Adams–Bashforth calculation of RHS
Consider this arbitrary
linear operation found in
the MITgcm, calculating
the RHS of the AB2
equation:

The MITgcm calculates in
three lines of Fortran 77
code.

Forward and Adjoint Code

5ECCO Summer School 2019 File ad_taf_output.f has forward code & its adjoint all concatenated in one file

do j = 1-oly, sny+oly

do i = 1-olx, snx+olx

ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))

gtrnm1(i,j,k) = gtracer(i,j,k)

gtracer(i,j,k) = gtracer(i,j,k)+ ab_gtr(i,j)

end do

end do

Adjoint code equivalent generated by TAF

do j = 1-oly, sny+oly

do i = 1-olx, snx+olx

ab_gtr_ad(i,j) = ab_gtr_ad(i,j) +gtracer_ad(i,j,k)

gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ gtrnm1_ad(i,j,k)

gtrnm1_ad(i,j,k) = 0.d0

gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ab_gtr_ad(i,j) *abfac

gtrnm1_ad(i,j,k) = gtrnm1_ad(i,j,k)-ab_gtr_ad(i,j) *abfac

ab_gtr_ad(i,j) = 0.d0

end do

end do

Forward model code snippet

TAF processes the forward model source code, line by line, and constructs a new source code
following a set of transformation algorithms. Here, the code on the left is transformed to the code
on the right. Forward model variable names and their corresponding adjoint variables are colored.

Forward and Adjoint Code

6ECCO Summer School 2019 File ad_taf_output.f has forward code & its adjoint all concatenated in one file

do j = 1-oly, sny+oly

do i = 1-olx, snx+olx

ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))

gtrnm1(i,j,k) = gtracer(i,j,k)

gtracer(i,j,k) = gtracer(i,j,k)+ ab_gtr(i,j)

end do

end do

Adjoint code equivalent generated by TAF

do j = 1-oly, sny+oly

do i = 1-olx, snx+olx

ab_gtr_ad(i,j) = ab_gtr_ad(i,j) +gtracer_ad(i,j,k)

gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ gtrnm1_ad(i,j,k)

gtrnm1_ad(i,j,k) = 0.d0

gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ab_gtr_ad(i,j) *abfac

gtrnm1_ad(i,j,k) = gtrnm1_ad(i,j,k)-ab_gtr_ad(i,j) *abfac

ab_gtr_ad(i,j) = 0.d0

end do

end do

Forward model code snippet

How does TAF take the code on the left which is fairly straightforward to understand and transform
it to the code on the right which is far less easy to interpret at first glance?

ECCO Summer School 2019 7

Consider each line of code as a subset of the full model M that advances a
subset of the full model state vector x as
xi (t+1) = Mi xi (t)
where i corresponds to a line of code, xi is the subset of the full model state
vector that appears in the source code line i, and Mi is the subset of the full
model corresponding to source code line i.

Let us proceed by considering each line of code in turn, writing it in terms of
xi (t +1) = Mi xi (t)

Note, each line of forward model code updates one variable but does not
necessarily advance the model “calendar date” forward. Therefore, consider
time levels t and t +1 as indicating the values of xi before and after the
operation of Mi.

ECCO Summer School 2019 8

ab_gtr = abfac*(gtracer -gtrnm1)

gtracer	=	1 0 0		gtracer
gtrnm1		0 1 0		gtrmn1
ab_gtr		abfac -abfac 0		ab_gtr

x(t+1) = M x(t)

ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))
gtrnm1(i,j,k) = gtracer(i,j,k)
gtracer(i,j,k) = gtracer(i,j,k)+ ab_gtr(i,j)

Forward model code snippet

Step 1: Consider each line of code in turn, writing it in terms of xi (t+1) = Mi xi (t)

ECCO Summer School 2019 9

gtrnm1(i,j,k) = gtracer(i,j,k)

| gtracer | = |1 0 | | gtracer |
| gtrnm1 | |1 0 | | gtrmn1 |

x(t+1) = M x(t)

Forward model code snippet

Step 1: Consider each line of code in turn, writing it in terms of xi (t+1) = Mi xi (t)

ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))
gtrnm1(i,j,k) = gtracer(i,j,k)
gtracer(i,j,k) = gtracer(i,j,k)+ ab_gtr(i,j)

ECCO Summer School 2019 10

gtracer(i,j,k) = gtracer(i,j,k) + ab_gtr(i,j)

| ab_gtr | |1 0 | | ab_gtr |
| gtracer | = |1 1 | | gtracer |

x(t+1) = M x(t)

Forward model code snippet

Step 1: Consider each line of code in turn, writing it in terms of xi (t+1) = Mi xi (t)

ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))
gtrnm1(i,j,k) = gtracer(i,j,k)
gtracer(i,j,k) = gtracer(i,j,k)+ ab_gtr(i,j)

ECCO Summer School 2019 11

Recall that
1. the adjoint of the linear model M is MT

2. the adjoint model equivalent for a linear forward model of x(t) = MT x(t+1) is

x_ad(t) = MT x_ad(t+1)

• TAF uses the “_ad” suffix to indicate adjoint variables (sensitivities to J)

• note that time runs backwards in the adjoint model equation from t +1 to t

Step 2: Line-by-line transformation of the forward model

ECCO Summer School 2019 12

gtracer(i,j,k) = gtracer(i,j,k) + ab_gtr(i,j)

| ab_gtr | |0 1 | | ab_gtr |
| gtracer | = |1 1 | | gtracer |

x(t+1) = M x(t)

Forward model code snippet: Last line first

| ab_gtr_ad | | 0 1 | | ab_gtr_ad |
| gtracer_ad | = | 1 1 | | gtracer_ad |

ab_gtr_ad = ab_gtr_ad + gtracer_ad
gtracer_ad = gtracer_ad

adjoint model code snippet

x_ad(t) = MT x_ad(t+1)

forward model code snippet

ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))
gtrnm1(i,j,k) = gtracer(i,j,k)
gtracer(i,j,k) = gtracer(i,j,k)+ ab_gtr(i,j)

adjoint model equation in matrix form

forward model equation in matrix form

ECCO Summer School 2019 13

ab_gtr_ad = ab_gtr_ad + gtracer_ad
gtracer_ad = gtracer_ad

Adjoint code equivalent generated by TAF
do j = 1-oly, sny+oly
do i = 1-olx, snx+olx
ab_gtr_ad(i,j) = ab_gtr_ad(i,j) +gtracer_ad(i,j,k)
gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ gtrnm1_ad(i,j,k)
gtrnm1_ad(i,j,k) = 0.d0
gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ab_gtr_ad(i,j) *abfac
gtrnm1_ad(i,j,k) = gtrnm1_ad(i,j,k)-ab_gtr_ad(i,j) *abfac
ab_gtr_ad(i,j) = 0.d0

end do
end do

TAF is smart enough to
exclude the useless line
“gtracer_ad = gtracer_ad” in
the adjoint source code.

adjoint model code snippet

gtracer(i,j,k) = gtracer(i,j,k) + ab_gtr(i,j) forward model code snippet

ECCO Summer School 2019 14

gtrnm1(i,j,k) = gtracer(i,j,k)

| gtracer | = |1 0 | | gtracer |
| gtrnm1 | |1 0 | | gtrnm1 |

x(t+1) = M x(t)

Forward model code snippet: analyze prior line

| gtracer_ad | = | 1 1 | | gtracer_ad |
| gtrnm1_ad | | 0 0 | | gtrnm1_ad |

gtracer_ad = gtracer_ad + gtrnm1_ad
gtrnm1_ad = 0

adjoint model code snippet

x_ad(t) = MT x_ad(t+1)

forward model code snippet

ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))
gtrnm1(i,j,k) = gtracer(i,j,k)
gtracer(i,j,k) = gtracer(i,j,k)+ ab_gtr(i,j)

adjoint model equation in matrix form

forward model equation in matrix form

ECCO Summer School 2019 15

gtracer_ad = gtracer_ad + gtrnm1_ad
gtrnm1_ad = 0

Adjoint code equivalent generated by TAF
do j = 1-oly, sny+oly

do i = 1-olx, snx+olx

ab_gtr_ad(i,j) = ab_gtr_ad(i,j) +gtracer_ad(i,j,k)

gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ gtrnm1_ad(i,j,k)
gtrnm1_ad(i,j,k) = 0.d0
gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ab_gtr_ad(i,j) *abfac

gtrnm1_ad(i,j,k) = gtrnm1_ad(i,j,k)-ab_gtr_ad(i,j) *abfac

ab_gtr_ad(i,j) = 0.d0

end do

end do

adjoint model code snippet

Information about the
sensitivity of J to past
perturbations of gtrnm1
is lost because gtrnm1
is replaced by gtracer
in the forward code. This
manifests in the adjoint
code as gtracer_ad
being set to zero.

gtrnm1(i,j,k) = gtracer(i,j,k) forward model code snippet

ECCO Summer School 2019 16

ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))

gtracer		1 0 0		gtracer
gtrnm1	=	0 1 0		gtrmn1
ab_gtr		abfac -abfac 0		ab_gtr

x(t+1) = M x(t)

Forward model code snippet: analyze “first” line last

gtracer_ad		1 0 abfac		gtracer_ad
gtrnm1_ad	=	0 1 -abfac		gtrmn1_ad
ab_gtr_ad		0 0 0		ab_gtr_ad

gtracer_ad = gtracer_ad + ab_gtr_ad * abfac
gtrnm1_ad = gtrmn1_ad - ab_gtr_ad * abfac
ab_gtr_ad = 0

adjoint model code snippet

x_ad(t) = MT x_ad(t+1)

forward model code snippet

ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))
gtrnm1(i,j,k) = gtracer(i,j,k)
gtracer(i,j,k) = gtracer(i,j,k)+ ab_gtr(i,j)

adjoint model equation in matrix form

forward model equation in matrix form

ECCO Summer School 2019 17

Adjoint code equivalent generated by TAF
do j = 1-oly, sny+oly
do i = 1-olx, snx+olx
ab_gtr_ad(i,j) = ab_gtr_ad(i,j) +gtracer_ad(i,j,k)
gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ gtrnm1_ad(i,j,k)
gtrnm1_ad(i,j,k) = 0.d0
gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ab_gtr_ad(i,j) *abfac
gtrnm1_ad(i,j,k) = gtrnm1_ad(i,j,k)-ab_gtr_ad(i,j) *abfac
ab_gtr_ad(i,j) = 0.d0

end do
end do

gtracer_ad = gtracer_ad + ab_gtr_ad * abfac
gtrnm1_ad = gtrmn1_ad - ab_gtr_ad * abfac
ab_gtr_ad = 0

ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))

adjoint model code snippet

forward model code snippet

ECCO Summer School 2019 18

1. Generation of adjoint code occurs via line-by-line transformation on the
forward code

2. Consider each line of model code as a ‘mini model’ that operates on
an small subset of the full state vector

x(t) = MT x(t+1)

3. Adjoint model source code is created in reverse order
• the adjoint of a linear model M is MT

• the adjoint model equation is

x_ad(t) = MT x_ad(t+1)

Summary: Line-by-line transformation of the forward model is interpretable

Forward and Adjoint Code

19ECCO Summer School 2019 File ad_taf_output.f has forward code & its adjoint all concatenated in one file

do j = 1-oly, sny+oly
do i = 1-olx, snx+olx
ab_gtr(i,j) = abfac*(gtracer(i,j,k)-gtrnm1(i,j,k))
gtrnm1(i,j,k) = gtracer(i,j,k)
gtracer(i,j,k) = gtracer(i,j,k)+ ab_gtr(i,j)

end do
end do

Adjoint code equivalent generated by TAF

do j = 1-oly, sny+oly
do i = 1-olx, snx+olx
ab_gtr_ad(i,j) = ab_gtr_ad(i,j) +gtracer_ad(i,j,k)
gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ gtrnm1_ad(i,j,k)
gtrnm1_ad(i,j,k) = 0.d0
gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ab_gtr_ad(i,j) *abfac
gtrnm1_ad(i,j,k) = gtrnm1_ad(i,j,k)-ab_gtr_ad(i,j) *abfac
ab_gtr_ad(i,j) = 0.d0

end do
end do

Forward model code snippet

ECCO Summer School 2019 20

What is the adjoint model code snippet corresponding with
What is the mini adjoint model in matrix form?

hypothetical forward model code snippet

What happens when the model M is nonlinear?

| y | | y 0 |
| z | = | y az3+bz |

z = a z3 + b z + y

x(t+1) = M(x(t))

forward model equation in matrix form

ECCO Summer School 2019 21

What happens when the model M is nonlinear?

| y | | y 0 |
| z | = | y az3+bz |

z = a z3 + b z + y

x(t+1) = M(x(t))

| y_ad | | 1 1 | | y_ad |
| z_ad | = | 0 3az2+b | | z_ad |

x_ad(t) = x_ad(t+1)

adjoint model equation in matrix form

forward model equation in matrix form

hypothetical forward model code snippet

