

Tracer Budgets in ECCO—Part I: Overview and Some Applications

Christopher G. Piecuch (cpiecuch@whoi.edu) Woods Hole Oceanographic Institution, Woods Hole, MA

Estimating the Circulation and Climate of the Ocean (ECCO) Summer School May 19-31, 2019 | Friday Harbor Laboratories | University of Washington

What Drives Changes in Ocean Heat & Freshwater Content?

2/41

Sea-Surface Temperature & the "Slowdown"

Fyfe et al. (2016), Nat. Clim. Change

Decadal Variability in the Subpolar North Atlantic

Robson et al. (2016), Nat. Geosci.

Ongoing Changes in Global-Mean Steric Sea Level

Roemmich and Gilson (2009), Prog. Oceanogr. Figure provided by https://sealevel.nasa.gov/

Conservation Laws (in a rescaled coordinate z*)

$$\frac{\partial \left(s^{*} \theta\right)}{\partial t} = -\nabla_{z^{*}} \left(s^{*} \theta \mathbf{v}_{res}\right) - \frac{\partial \left(\theta w_{res}\right)}{\partial z^{*}} + s^{*} \mathcal{F}_{\theta} + s^{*} D_{\theta}$$

$$\frac{\partial \left(s^*S\right)}{\partial t} = -\nabla_{z^*} \left(s^*S\mathbf{v}_{res}\right) - \frac{\partial \left(Sw_{res}\right)}{\partial z^*} + s^*\mathcal{F}_S + s^*D_S$$

$$z^{*} \doteq \frac{z - \eta\left(x, y, t\right)}{H\left(x, y\right) + \eta\left(x, y, t\right)} H\left(x, y\right) \ , \ s^{*} \doteq 1 + \eta/H$$

Which of the following processes can, in principle, effect changes in **globally averaged** steric sea level?

- a. Sea-surface heat exchanges
- b. Internal ocean heat advection
- c. Small-scale mixing of heat

Difficulties of Closing Budgets With Ocean Data & Re-analyses

8/41

Observational Challenges

- Comprehensive diagnosis of budgets requires data that are uncertain and hard (if not impossible) to make
- Example of the 2009-2010
 Subtropical North Atlantic "Cold Anomaly" (Bryden et al. 2014; Cunningham et al. 2013; Roberts et al. 201)

Challenges Related to Data-Assimilation Products

10/41

Diagnosing Budgets Using ECCO Version 4

Discretizing the Primitive Equations

$$\frac{\frac{\partial \left(s^{*}\theta\right)}{\partial t}}{G^{\theta, tot}} = \underbrace{-\nabla_{z^{*}}\left(s^{*}\theta\mathbf{v}_{res}\right) - \frac{\partial \left(\theta w_{res}\right)}{\partial z^{*}}}{G^{\theta, adv}} + \underbrace{s^{*}\mathcal{F}_{\theta}}_{G^{\theta, forc}} + \underbrace{s^{*}D_{\theta}}_{G^{\theta, diff}}$$

$$\frac{s^{*n+1}\theta^{n+3/2} - s^{*n}\theta^{n+1/2}}{\Delta t} = \mathcal{A}\left(\theta, \mathbf{u}^{n+1} + \mathbf{u}^{n+1}_{b}\right) + s^{*n}\left(\mathcal{F}^{n+1}_{\theta} + D^{n+1/2}_{\sigma,\theta} + D^{n+3/2}_{\perp,\theta}\right)$$

Diagnostic	Time	Description (Units)	
ETAN	Snapshot	Surface height anomaly (m)	
THETA	Snapshot	Potential temperature (°C)	
TFLUX	Average	Total heat flux (W m^{-2})	
oceQsw	Average	Net shortwave radiation (W m^{-2})	
ADVr_TH	Average	Vertical advective flux of pot. temp. (°C m ³ s ^{-1})	
ADVx_TH	Average	Zonal advective flux of pot. temp. (°C m ³ s ⁻¹)	
ADVy_TH	Average	Meridional advective flux of pot. temp. (°C m ³ s ^{-1})	
DFrI_TH	Average	Implicit vertical diffusive flux of pot. temp. (°C m ³ s ^{-1})	
DFrE_TH	Average	Explicit vertical diffusive flux of pot. temp. (°C m ³ s ^{-1})	
DFxE_TH	Average	Explicit zonal diffusive flux of pot. temp. (°C m ³ s ^{-1})	
DFyE_TH	Average	Explicit meridional diffusive flux of pot. temp. (°C m ³ s ⁻¹)	

MITgcm diagnostics required to evaluate the grid-cell heat budget

Algorithm

1: fo	or $t = t_1, t_2, \dots t_{T-1}, t_T$ do	\triangleright Loop over T time steps (months) t
2:	$U_{i,j,k} = \texttt{ADVx_TH}\left\{t\right\}$	\triangleright 3-D average zonal advection over month t
3:	$V_{i,j,k} = extsf{ADVy_TH}\left\{t ight\}$	\triangleright 3-D average meridional advection over month t
4:	$W_{i,j,k} = \texttt{ADVr}_{-}\texttt{TH}\left\{t\right\}$	\triangleright 3-D average vertical advection over month t
5:	$\mathcal{U}_{i,j,k} = \texttt{DFxE}_{-}\texttt{TH}\left\{t ight\}$	\triangleright 3-D average zonal diffusion over month t
6:	$\mathcal{V}_{i,j,k} = extsf{DFyE_TH}\left\{t ight\}$	\triangleright 3-D average meridional diffusion over month t
7:	$\mathcal{W}^{E}_{i,j,k} = extsf{DFyE_TH}\left\{t ight\}$	\triangleright 3-D average vertical diffusion (explicit) over month t
8:	$\mathcal{W}_{i,j,k}^{I}= extsf{DFyI_TH}\left\{t ight\}$	\triangleright 3-D average vertical diffusion (implicit) over month t
9:	$N_{i,j}^{(0)} = \texttt{ETAN}\left\{t - \Delta t\right\}$	\triangleright 2-D surface height snapshot at start of month t
10:	$N_{i,j}^{(f)} = \operatorname{ETAN}\left\{t ight\}$	\triangleright 2-D surface height snapshot at end of month t
11:	$T_{i,j,k}^{(0)} =$ theta $\{t-\Delta t\}$	\triangleright 3-D temperature snapshot at start of month t
12:	$T_{i,j,k}^{(f)}=$ theta $\{t\}$	\triangleright 3-D temperature snapshot at end of month t
13:	$v_{i,j,k} = h_{i,j,k} A_{i,j} \Delta z_k$	▷ Grid volume

14/41

Algorithm

14:	for $i = i_1, i_2, \dots i_{I-1}, i_I$ do	\triangleright Loop over I longitude cells i
15:	for $j = j_1, j_2, \dots j_{J-1}, j_J$ do	\triangleright Loop over J latitude cells j
16:	$s_{i,j}^{*(0)} = \left(1 + N_{i,j}^{(0)} / H_{i,j}\right)$	
17:	$s_{i,j}^{*(f)} = \left(1 + N_{i,j}^{(f)} / H_{i,j}\right)$	
18:	for $k = k_1, k_2, \dots, k_{K-1}, k_K$ do	\triangleright Loop over K vertical cells k
19:	$G_{i,j,k}^{\theta,tot} = \left(T_{i,j,k}^{(f)} s_{i,j}^{*(f)} - T_{i,j,k}^{(0)} s_{i,j}^{*(0)}\right) / \Delta$	ht
20:	$G_{i,j,k}^{ heta, advH} = (U_{i,j,k} - U_{i+1,j,k} + V_{i,j,k} - U_{i+1,j,k})$	$-V_{i,j+1,k})/v_{i,j,k}$
21:	$G_{i,j,k}^{ heta,diffH} = (\mathcal{U}_{i,j,k} - \mathcal{U}_{i+1,j,k} + \mathcal{V}_{i,j,k})$	$-\left. \mathcal{V}_{i,j+1,k} ight) /v_{i,j,k}$
22:	$G_{i,j,k}^{\theta,advV} = \left[\left(1 - \delta_{k,K}\right) W_{i,j,k+1} - W_i \right]$	$\left[j,j,k ight] /v_{i,j,k}$
23:	$G_{i,j,k}^{ heta,diffV} = \left[\left(1 - \delta_{k,K}\right) \left(\mathcal{W}_{i,j,k+1}^E + \mathcal$	$\left(\mathcal{W}_{i,j,k+1}^{I} ight) - \mathcal{W}_{i,j,k}^{E} - \mathcal{W}_{i,j,k}^{I} ight] / v_{i,j,k}$
24:	$G_{i,j,k}^{\theta,adv} = G_{i,j,k}^{\theta,advH} + G_{i,j,k}^{\theta,advV}$	
25:	$G_{i,j,k}^{\theta,diff} = G_{i,j,k}^{\theta,diffH} + G_{i,j,k}^{\theta,diffV}$	
26:	end for	
27:	end for	
28:	end for	

Example of Closure

A Practical Guide

- For more details, come to tomorrow's tutorial and "hands-on" lab session—
 Friday, May 24th
 - 3:00-4:00 PM; 4:30-6:30 PM
- A full guide is available and downloadable
 - https://dspace.mit.edu/handle/17 21.1/111094

A Note on Practical Evaluation of Budgets in ECCO Version 4 Release 3

Christopher G. Piecuch (cpiecuch@aer.com)

June 16, 2017

Contents 1 Introduction 2 2 2 Obtaining ECCOv4 Release 3 3 4 3 Model Configuration 3 ₅ 4 Budgets Evaluated for Extensive Quantities 5 6 5 Budgets Estimated for Intensive Quantities 16 ... A Example Matlab Code and the gcmfaces Framework 18 13

A Few Illustrative Vignettes

Vignette #1— Sea Level & Heat Content in the Tropical Indian Ocean

Thompson et al. (2016), J. Geophys. Res. Oceans

20/41

Thompson et al. (2016), J. Geophys. Res. Oceans

Sea Level & Heat Content in the Tropical Indian

Thompson et al. (2016), J. Geophys. Res. Oceans

22/4<u>1</u>

23/41

Thompson et al. (2016), J. Geophys. Res. Oceans

Sea Level & Heat Content in the Tropical Indian

Thompson et al. (2016) J. Geophys. Res. Oceans

Sea Level & Heat Content in the **Tropical** Indian

Thompson et al. (2016) J. Geophys. Res. Oceans

Vignette #2— Decadal Variability in the Subpolar North Atlantic Ocean

26/41

Piecuch et al. (2017), J. Geophys. Res. Oceans

27/41

Piecuch et al. (2017), J. Geophys. Res. Oceans

Forcing of Eastern Subpolar Gyre Budget

Foukal and Piecuch, in prep.

Forcing of Subpolar Gyre/Labrador Sea Budget

Foukal and Piecuch, in prep.

Vignette #3— Global-Mean Steric Sea Level Change 32/41

Global-Mean Steric Sea Level

Global-Mean Steric Sea Level

Global-Mean Steric Sea Level

Nonlinear Equation of State Effects

Griffies and Greatbatch (2012), Ocean Modell.

Global-Mean Steric Sea Level

Piecuch & Ponte (2014) J. Climate □ Other examples (that sadly I don't have time to discuss)

- Heat budgets—Kim et al. (2004, 2007); Lee et al. (2004); Nie et al. (2013); Buckley et al. (2014); Tamsitt et al. (2016); Ponte & Piecuch (2018); Su et al. (2018); Asbjørnsen et al. (2019) ...
- Salt & salinity budgets—Qu et al. (2011, 2013); Vinogradova & Ponte (2013, 2017); Gao et al. (2014)Ponte & Vinogradova (2017) ...
- Regional steric height budgets—Piecuch & Ponte (2011, 2012, 2013) ...
- Momentum budgets—Sonnewald et al. (2019) ...

Which of the following processes can, in principle, effect changes in **globally averaged** steric sea level?

- a. Sea-surface heat exchanges
- b. Internal ocean heat advection
- c. Small-scale mixing of heat

Which of the following processes can, in principle, effect changes in **globally averaged** steric sea level?

a. Sea-surface heat exchanges

- **b.** Internal ocean heat advection
- c. Small-scale mixing of heat

Summary

 Budget analysis is a powerful tool for understanding and identifying the mechanisms of oceanic change

 Difficulties with observations often preclude closed budget analyses

 The data-constrained and physically consistent nature of the ECCO state estimates allows for meaningful budget attribution of observed oceanic changes

Thank you.