Record-breaking 2023 Marine Heatwaves

- 2023 saw an extraordinary surge in marine heatwaves, setting new records in duration, extent, and intensity
- We examined warming patterns from ECCO and Optimum Interpolation Sea Surface Temperature (OISST) across key regions in the Pacific and Atlantic Oceans
- Using ECCO, we conducted a mixed-layer heat budget analysis to identify region-specific drivers of the marine heatwaves

Strong agreement with OISST supports ECCO's reliability in replicating marine heatwave characteristics, validating its utility for analyzing underlying physical causes. Our analysis decomposes the contributions of ocean temperature tendency, surface net heat flux, horizontal advection, and vertical mixing processes.

Using ECCO, we identified region-specific drivers:

- Enhanced shortwave flux and a shallower mixed layer in the North Pacific and North Atlantic;
- Reduced cloud cover and increased advection in the Southwest Pacific; and Oceanic advections in the Tropical Eastern Pacific.

Dong, T., et al. (2025) <u>Record-breaking 2023 marine heatwaves</u>, Science, 389(6758), 369-374, doi: 10.1126/science.adr0910

Ocean Mixed-Layer Heat Budget (°C per year)

Ocean mixed-layer budget results for the key regions.

Given that 89% of Earth's long-term energy imbalance is stored in the ocean, further research is essential to unravel the ocean's role in driving these unprecedented marine heatwaves.