

Marie Zahn, Cara Williams, Oceanne Bousquet, Mike Wood

McFLURRIE

Mackenzie Freshwater Layers Uncover River Runoff Ice Evolution

How does increased freshwater runoff influence sea ice and salinity at the mouth of the Mackenzie River?

Project Motivations

Salinity controls upper ocean stratification in the Arctic

ECCO SUMMER SCHOOL

- SASSIE mission hypothesis:
 Sea surface salinity anomalies
 generated by summer sea ice melt are
 an important predictor for autumn ice
 advance
- Exploration of high resolution SASSIE ECCO LLC1080 model revealed earlier sea ice formation over Mackenzie River plume

Freshwater layer traps subsurface heat

Approach

- Run ECCOv4r5 in 3 configurations from 2014-2019:
 - (1) control run
 - (2) increased runoff globally by 10%
 - (3) increase the runoff only by the Mackenzie river by 10%
 - (4) time varying runoff (from ECCO Darwin)
- Investigate adjoint sensitivities to salinity at the mouth of the Mackenzie River
- Use EMU convolution tool to understand controls on salinity near Mackenzie

Monthly climatology

Time-varying (daily)

A 10% increase in runoff leads to a slightly earlier onset of sea ice formation

2014 adjoint sensitivities

Mackenzie runoff modulates seasonal variability in salinity anomalies and wind stress controls interannual variability

Controls

Reflections

- Much more analysis could be done!
 - Compare to LLC1080 output
 - Recompute the convolution with LLC1080 wind forcing
- Should repeat adjoint and convolution with a sea-ice area cost function
- A larger perturbation in runoff may yield more significant changes

