SUMMER
SCHOOL

!

FLOW

First Learn tO Walk

FLOW: First Learn tO Walk

Karina Ramos Musalem, CICESE
Noah Rosenberg, University of Washington
Shreyas Gaikwad, University of Texas at Austin

Question: Using a simple climate model and its AD-generated
adjoint, can we perform a state estimation and recover realistic
control parameters?

The Budyko-Sellers Model: A review from Day 3 J& SUMMER
FLOW RBYd, [Jo}¢

tendency Insolation OLR Downgradient diffusion First Leiain tO Walk

C6) 5 = [1- ()] Q@) — eo)] + 2 (con(9) 5)

e 3 tunable parameters: Diffusivity
D, emissivity €, albedo «a

e | state variable: temperature T,

e (onverges to steady state
representing zonal-average,
time-mean temperature

an temperature (deg C)

Can we push the initial guess ST T N T T
towards the target using the adjoint

gradient to various controls? Set up as an optimization problem:

minimize | = (£ (T;-T; 4,ge)°/N

Exploration I: Implement and compare N SUMMER
various gradient descent algorithms el SCHOOL

Steepest Descent: For a control vector X; and gradient
g, let X;,; = X, - ag; using some learning rate a

n (J)

. Newton: Let Xi,, = X; - a(#H)'g, where is the Hessian
R of] with respect to X

.
. e

Quasi-Newton: Approximate B = (H)™! using cheaper
resources (BFCS: store full approximate B, L-BFGS:
calculate from last & control and gradient vectors

ttttttttttttttt

Tired of waiting for your
gradient descent to
converge? Try using

quasi-Newton methods!

NN ECCO
Exploration I: Implement and compare

various gradient descent algorithms FLOW

SUMMER

First Learn tO Walk . 4
30 .
T~ LO7 ——===< --- Steepest Descent .
y | . - :
)eSC =z=d N\ ——- Stochastic Gradient Descent id lent
207 - — M1 | --- BFGS g
= . i ’
] —_—]
| 0.8 - \\:‘ 'I L-BFGS ;;
= 10 1 ;“ 1 i ,r:.
§ ‘__'alll !f !:/
E i ni [/ .
s et X, o N essian
§ F b 1 N
° g 1l :l'
—10 A eSpE =< .' f
i 4
J,ff : 0.4 1 [’#‘?
—20 Pt -==- Steepest Descent ?‘\\ ’,,f
—_ 1 I [\ A
[thtggastlc Gradient Descent NtOl’ |I ‘:\ g ’?; lper
—30 02 4 Y \:\ e N ,,:r
=== L-BFGS (. ey = ~
R --ﬂ-.q;’ _______ - g 0
— Reanalysis BF(\\ ~ 5_\:_/ .
_40 - -
T T T T T T T
p— — _— T T T T T T T
75 50 5 0 25 50 75 fl"Ol’T s t0 . = = . S
latitude (deg N)

latitude (deg N)
Tired of waiting for your

gradient descent to
converge? Try using
quasi-Newton methods!

Exploration 2: How does the estimate Noead ECCO

. ;- SUMMER
change as we add and normalize controls? “rrow EFaT]

First Learn tO Walk
Uncertainties for a and e have different in
magnitudes and vary spatially (Eg. Aa with latitude)

Albedo (a) + emissivity (e)
Initial guess a: 2nd Legendre polynomial, e : constant

. Two normalized control variables I
Two control variables

no normalization

—— Aa 1.00, Ae 0.01

Latitude

T 20 E ——-| reanalysis
5 <
ERN a
5 30 —— 2control var. (a, e} —-- reanalysis E
E —— 1 control var. (a) E
. T i =
Sensitive to
choice of initial guess But | h
0.75 u ave a
descent step E / erfeat]
and threshold 2 oso P . Z
constan
for cost 0.25 4
function! albedo of Q
0.8
207 5
o,
LIE.I 0.6 E
& 061
,éo fIGO (I.'l 2‘0 4‘0 6‘0 3‘0
atitude *éO *ISO *“1—0 *2‘0 (I) 2‘0 4‘0 ﬁb BID

—— Aa varying 0.8-0.1, Ae 0.01

budyko_sellers_state_estimation.ipynb

State Estimation in the Budyko-Sellers energy balance model using
algorithmic differentiation in JAX

This notebaok runs the Budyko-Sellers 1-D energy balance model and uses its gradient to reduce the cost function J, which
represents the mismatch between zonal mean temperature from NCEP and the model.

References:
Notes on the Budyko-Sellers Model
Notes on L-BFGS implementation

Acknowledgements to Shreyas Gaikwad and lan Fenty for providing the Fortran code which was adapted for this notebook.

In []:

!pip install jax jaxlib

In [2]:

In

import jax.numpy as jnp
from jax import grad E
import numpy as np

import jax.numpy as jnp

from jax import grad, lax,jit
import sys

N = 188

num_controls = 1

import netCDF4 as nc

import matplotlib.pyplot as plt
from collections import deque

Step 0: download and plot the target data

We will use as our target the NCEP reanalysis surface temperature, averaged zonally and in time, to evolve our steady state
temperature to.

181: ## Import NCEP temperature, get zonal mean and extrapolate to grid size

XEDGES = jnp.linspace(-1.0, 1.8, N + 1)
X = 0.5 * (XEDGES[:-1] + XEDGES[1:])
LAT = jnp.arcsin(X) * 180.8 / jnp.pi
nY = ¥i1l - vial

¢ SUMMER
FLOW Ryd,{0li]8

First Learn tO Walk

budyko_sellers_controls.ipynb

State Estimation in the Budyko-Sellers energy balance model:
Exploring the role of controls

This noteboak runs the Budyke-Sellers 1-D energy balance model and uses its gradient to reduce the cost functin J, which
represents the mismatch between zonal mean temperature from NCEP and the model. It uses algorithmic differentiation in JAX.
We explore how the state estimation changes when we modify the number of controls and the uncertainties associated to them,

« We will solve for 1 contol (albedo) and 2 controls (albedo and emissivity)
« Explore how non-dimensicnalizing the inital controls helps the assimilation and provides final contral values that agree better with
physics and expected values.

References:

Notes on the Budyko-Sellers Modelby Brian E. J. Rose (University at Albany)

Shreyas Gaikwad and lan Fenty provided the Fortran code which was adapted for this notebaok

In [1]:

Ipip install jax jaxlib

Collecting jax
Using cached jax-8.6.1-py3-none-any.whl.metadata (13 k8)
Collecting jaxlib
Using cached jaxlib-8.6.1-cp312-cp3l2-manylinux2014_xB6_64.whl.metadata (1.2 kB)
Collecting ml_dtypes>=6.5.8 (from jax)
Using cached ml_dtypes-9.5.1-cp312-cp3l2-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (21 kB)

Requirement already satisfied: numpy>=1.25 in /srv/conda/envs/notebook/lib/python3.12/site-packages (from jax)
(2.0.2)

Collecting opt_einsum (from jax)
Using cached opt_einsum-3,4,8-py3-none-any,whl.metadata (6.3 kB)

Requirement already satisfied: scipy»=1.11.1 in /srv/conda/envs/notebook/Lib/python3.12/site-packages (from jax)
(1.15.1)

Using cached jax-0.6.1-py3-none-any.whl (2.4 MB)

Using cached jaxlil 6.1-cp312-cp312-nanylinux2814_x86_64.whl (89.1 MB)

Using cached ml_dtypes—8.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2814_x86_64.whl (4.7 MB)
Using cached opt_einsum-3.4.0-py3-none-any.whl (71 k8)

Installing collected packages: opt_einsum, ml_dtypes, jaxlib, jax

Successfully installed jax-8.6.1 jaxlib-2.6.1 ml_dtypes-9.5.1 opt_einsum-3.4.8

Product: two tutorial notebooks with self-contained state
estimation procedures, easily expandable

https://github.com/ECCO-Summer-School/ESS25-Team_FLOW/blob/main/notebooks/budyko_sellers_controls.ipynb
https://github.com/ECCO-Summer-School/ESS25-Team_FLOW/blob/main/notebooks/budyko_sellers_state_estimation.ipynb

Reflections A ECCO

SUMMER
e State estimation is hard! Even with 100-300 —
) FLOW K411

controls, convergence was sensitive to initial guess, FistLeamto walk
descent rate, algorithm used, constraints on controls,
convergence conditions, and more.

e AD is also sensitive to data structures and other
considerations in the cost function definition
FORTRAN 77
Gained skills in AD (jax + tapenade), fortran, gradient
descent, constraints on parameters

What would we do with I more week?

e How can we constrain uncertainties while also
constraining the values of controls?

e Explore time dependence and hysteresis in the
forward model-does this break our estimation?

e More complexity, more controls, more targets!
(moisture?)

ECCO

FLOW: First Learn tO Walk

Karina Ramos Musalem, CICESE
Noah Rosenberg, University of Washington

)

'Llr
FLOW

First Learn tO Walk

SUMMER
SCHOOL

Question: Using a simple climate model and its AD-generated adjoint, can
we perform a state estimation and recover realistic control parameters?

Product: two tutorial notebooks with
self-contained state estimation oT
procedures C(9) ats

tendency Downgradient diffusion

SOLAG)

Insolation OLR

= [1 - a(T3)] Q(¢) — €0 [(T)]* +

State Estimation in the Budyko-Sellers energy balance model using
algorithmic differentiation in JAX

nce mods! and wses ks gradiont 0 rechuce the cost function J, which
maan tamperatun from NCEP and the modal.

Two normalized control variables
e« Steepest descent S 2 ~—- reanalysis
094 « Stechastic gradient descent v _z
g 2 0 Z
. * BFGS H P
praiding ich v acapia for this rotebok: ol o’ L oo 8 20 7 N
. 8 o
State Estimation in the Budyko-Sellers energy balance model: s —40 T T T T T T T T
Exploring the role of controls S o074 s 2
s e initial guess
g .
Sos T
g
L]
051 i TP
0.4 b 1 Bibeea..,., 08
tee .: """ $eecsssnes E 0.7
031 L 4
fessescaas Eos
0 10 20 30 2 50
ReﬂeCtIOnS Iteration number -80 —60 —40 -20 Lan(:ude 20 40 60 80
° State estimation is hard! Even with I00-300 controls, no normalization —— Aa1.00, A 0.01 —— Aavarying 0.8-0.1, Ae 0.01
convergence was sensitive to initial guess, descent rate,

algorithm used, constraints on controls, convergence
conditions, and more.

° AD is also sensitive to data structures and other
considerations in the cost function definition

° Gained skills in AD (jax + tapenade), fortran, gradient
descent, constraints on parameters

Exploration I: Implementation of

. . . Exploration 2: How does the estimate
various gradient descent algorithms

change as we add and normalize controls?

