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Question: Using a simple climate model and its AD-generated
adjoint, can we perform a state estimation and recover realistic
control parameters?
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C6) 5 = [1- ()] Q@) — eo )] + 2 (con(9) 5 )

e 3 tunable parameters: Diffusivity
D, emissivity €, albedo «a

e | state variable: temperature T,

e (onverges to steady state
representing zonal-average,
time-mean temperature

an temperature (deg C)

Can we push the initial guess ST T N T T
towards the target using the adjoint

gradient to various controls? Set up as an optimization problem:

minimize | = (£ (T;-T; 4,ge)°/N



Exploration I: Implement and compare N SUMMER
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Steepest Descent: For a control vector X; and gradient
g, let X;,; = X, - ag; using some learning rate a

n (J)

. Newton: Let Xi,, = X; - a(#H)'g, where  is the Hessian
R of ] with respect to X

.
. e
-------------

----------

Quasi-Newton: Approximate B = (H)™! using cheaper
resources (BFCS: store full approximate B, L-BFGS:
calculate from last & control and gradient vectors

ttttttttttttttt

Tired of waiting for your
gradient descent to
converge? Try using

quasi-Newton methods!
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Tired of waiting for your

gradient descent to
converge? Try using
quasi-Newton methods!
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Uncertainties for a and e have different in
magnitudes and vary spatially (Eg. Aa with latitude)

Albedo (a) + emissivity (e)
Initial guess a: 2nd Legendre polynomial, e : constant

. Two normalized control variables I
Two control variables

no normalization

—— Aa 1.00, Ae 0.01
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budyko_sellers_state_estimation.ipynb

State Estimation in the Budyko-Sellers energy balance model using
algorithmic differentiation in JAX

This notebaok runs the Budyko-Sellers 1-D energy balance model and uses its gradient to reduce the cost function J, which
represents the mismatch between zonal mean temperature from NCEP and the model.

References:
Notes on the Budyko-Sellers Model
Notes on L-BFGS implementation

Acknowledgements to Shreyas Gaikwad and lan Fenty for providing the Fortran code which was adapted for this notebook.

In [ ]:

!pip install jax jaxlib

In [2]:

In

import jax.numpy as jnp
from jax import grad E
import numpy as np

import jax.numpy as jnp

from jax import grad, lax,jit
import sys

N = 188

num_controls = 1

import netCDF4 as nc

import matplotlib.pyplot as plt
from collections import deque

Step 0: download and plot the target data

We will use as our target the NCEP reanalysis surface temperature, averaged zonally and in time, to evolve our steady state
temperature to.

181: ## Import NCEP temperature, get zonal mean and extrapolate to grid size

XEDGES = jnp.linspace(-1.0, 1.8, N + 1)
X = 0.5 * (XEDGES[:-1] + XEDGES[1:])
LAT = jnp.arcsin(X) * 180.8 / jnp.pi
nY = ¥i1l - vial
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budyko_sellers_controls.ipynb

State Estimation in the Budyko-Sellers energy balance model:
Exploring the role of controls

This noteboak runs the Budyke-Sellers 1-D energy balance model and uses its gradient to reduce the cost functin J, which
represents the mismatch between zonal mean temperature from NCEP and the model. It uses algorithmic differentiation in JAX.
We explore how the state estimation changes when we modify the number of controls and the uncertainties associated to them,

« We will solve for 1 contol (albedo) and 2 controls (albedo and emissivity)
« Explore how non-dimensicnalizing the inital controls helps the assimilation and provides final contral values that agree better with
physics and expected values.

References:

Notes on the Budyko-Sellers Modelby Brian E. J. Rose (University at Albany)

Shreyas Gaikwad and lan Fenty provided the Fortran code which was adapted for this notebaok

In [1]:

Ipip install jax jaxlib

Collecting jax
Using cached jax-8.6.1-py3-none-any.whl.metadata (13 k8)
Collecting jaxlib
Using cached jaxlib-8.6.1-cp312-cp3l2-manylinux2014_xB6_64.whl.metadata (1.2 kB)
Collecting ml_dtypes>=6.5.8 (from jax)
Using cached ml_dtypes-9.5.1-cp312-cp3l2-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (21 kB)

Requirement already satisfied: numpy>=1.25 in /srv/conda/envs/notebook/lib/python3.12/site-packages (from jax)
(2.0.2)

Collecting opt_einsum (from jax)
Using cached opt_einsum-3,4,8-py3-none-any,whl.metadata (6.3 kB)

Requirement already satisfied: scipy»=1.11.1 in /srv/conda/envs/notebook/Lib/python3.12/site-packages (from jax)
(1.15.1)

Using cached jax-0.6.1-py3-none-any.whl (2.4 MB)

Using cached jaxlil 6.1-cp312-cp312-nanylinux2814_x86_64.whl (89.1 MB)

Using cached ml_dtypes—8.5.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2814_x86_64.whl (4.7 MB)
Using cached opt_einsum-3.4.0-py3-none-any.whl (71 k8)

Installing collected packages: opt_einsum, ml_dtypes, jaxlib, jax

Successfully installed jax-8.6.1 jaxlib-2.6.1 ml_dtypes-9.5.1 opt_einsum-3.4.8

Product: two tutorial notebooks with self-contained state
estimation procedures, easily expandable


https://github.com/ECCO-Summer-School/ESS25-Team_FLOW/blob/main/notebooks/budyko_sellers_controls.ipynb
https://github.com/ECCO-Summer-School/ESS25-Team_FLOW/blob/main/notebooks/budyko_sellers_state_estimation.ipynb

Reflections A ECCO

SUMMER
e State estimation is hard! Even with 100-300 —
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controls, convergence was sensitive to initial guess, FistLeamto walk
descent rate, algorithm used, constraints on controls,
convergence conditions, and more.

e AD is also sensitive to data structures and other
considerations in the cost function definition
FORTRAN 77
Gained skills in AD (jax + tapenade), fortran, gradient
descent, constraints on parameters

What would we do with I more week?

e How can we constrain uncertainties while also
constraining the values of controls?

e Explore time dependence and hysteresis in the
forward model-does this break our estimation?

e More complexity, more controls, more targets!
(moisture?)
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Question: Using a simple climate model and its AD-generated adjoint, can
we perform a state estimation and recover realistic control parameters?

Product: two tutorial notebooks with
self-contained state estimation oT
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° State estimation is hard! Even with I00-300 controls, no normalization —— Aa1.00, A 0.01 —— Aavarying 0.8-0.1, Ae 0.01
convergence was sensitive to initial guess, descent rate,

algorithm used, constraints on controls, convergence
conditions, and more.

° AD is also sensitive to data structures and other
considerations in the cost function definition

° Gained skills in AD (jax + tapenade), fortran, gradient
descent, constraints on parameters

Exploration I: Implementation of

. . . Exploration 2: How does the estimate
various gradient descent algorithms

change as we add and normalize controls?



