

ECCOv4r4-Based Analysis of Cooling Trends in the Upper Tropical Eastern Pacific (CROCODILE)

Feng Jiang, Andrea Mosso, Antonio Robles, Suman Shekhar, Zhangzhe Zhao

2

Who are we? What are we working on? Behind the project

ECCOv4r4-Based Analysis of Cooling Trends in the **Upper Tropical Eastern Pacific (CROCODILE)**

crocodile

Feng Jiang, Andrea Mosso, Antonio Robles, Suman Shekhar, Zhangzhe Zhao

ECCOv4r4-Based Analysis of Cooling Trends in the Upper Tropical Eastern Pacific (CROCODILE)

crocodile

Feng Jiang, Andrea Mosso, Antonio Robles, Suman Shekhar, Zhangzhe Zhao

What are we

working on?

A cooling trend in a warming planet!

A cooling signal despite global warming is cool! But why should we care?

A cooling signal despite global warming is cool! But why should we care?

Models Do Not Capture It!

A cooling signal despite global warming is cool! But why should we care?

Models Do Not Capture It!

Reanalysis data Do Not Have A Clue

A cooling signal despite global warming is cool! But why should we care?

Why?

Our Guess "The budget is not closed, and the possibly important mixing is in the residual."

Reanalysis data Do Not Have A Clue

$$\frac{\partial T}{\partial t} = G_{forcing} + G_{advection} + G_{diffusion} + \frac{15^{15}}{10^{15}} \frac{\text{Upper 50 m}}{\text{Upper 50 m}}$$
Closed budget without residual

What Does EMU Attribution Tool Say

Tropical surface temperature long-term trends are due to a small balance among large terms

When Climate Changes

$$\int \frac{\partial T}{\partial t} - \int \frac{\partial T}{\partial t}$$

Last 10 years (2008-2017)

First 10 years (1992-2001)

What Does Heat Budget Say

$$\int \frac{\partial T}{\partial t} - \int \frac{\partial T}{\partial t} =$$

$$(G_{forcing} + G_{advection} + G_{diffusion}) - (G_{forcing} + G_{advection} + G_{diffusion})$$

A previously-ignored cooling term from mixing

 $G_{diffusion} - G_{diffusion}$

What Does EMU Attribution Tool Say

Tropical surface temperature long-term trends are due to a small balance among large terms

When Climate Changes

$$\int \frac{\partial T}{\partial t} - \int \frac{\partial T}{\partial t}$$

Last 10 years (2008-2017)

First 10 years (1992-2001)

However, we want to chase a "terribly small" signal (quoting Ichiro)

How to make the eastern Pacific cooler!

Western Boundary Current

Subtropical Cell

Hypothesis#1: Increase the wind to directly amplify wind-driven circulation

Western Boundary Current

Subtropical Cell

Hypothesis#1: Increase the wind to directly amplify wind-driven circulation

Hypothesis#2: Decrease warm pool freshwater flux to trigger density-driven circulation change!

Western Boundary Current

Subtropical Cell

Hypothesis#1: Increase the wind to directly amplify wind-driven circulation

Hypothesis#2: Decrease warm pool freshwater flux to trigger density-driven circulation change!

Hypothesis#3: Decrease the climatological vertical diffusivity, and we don't know why!

Central Pacific

Eastern Pacific

Hypothesis#1: Increase the wind to directly amplify wind-driven circulation

Hypothesis#2: Decrease warm pool freshwater flux to trigger density-driven circulation change!

Hypothesis#3: Decrease the climatological vertical diffusivity, and we don't know why!

Results from Experiments

So which experiment gives us the cooling trend?

Luckily, all!

Results from Experiments

Upper 50 m Temperature Trend during 1992-2017

Results from Experiments

One example: EXP#2 Salty

Salinity anomaly WP => Increased western downwelling => Upwelling at the east (continuity)=> Eastern Pacific Cooling!

Project Reflection

- What were the challenges?
- ✓ Some of us just shifted from MATLAB and NCL to Python!
- ✓ Two weeks are too short for conducting decent experiments!
- What did you learn?
- ✓ ECCO is as amazing as expected!
- What new skills did you acquire?
- ✓ Closing the budget elegantly. EMU.
- If you had another week, how would you continue your project?
- **✓** Physical interpretations of our sensitivity experiments and test these using EMU tools.
- ✓ We would continue our project on the beach (quoting Hugo!)

Project Reflection

Behind the project

Q: Why is there a shark in our team logo?

- A: A miscommunication between human and Al
- B. Al's deliberate error
- C. Somebody in our group needs to improve their ENGLISH!

