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ABSTRACT

The Indian Ocean general circulation is estimated by fitting the MIT Ocean General Circulation
Model to the annual mean climatological hydrography and surface forcing, using the model and its
computer-generated adjoint. Open boundary conditions are implemented to the west of the Indone-
sian Archipelago and near 30S. The approach simultaneously optimizes the initial conditions of the
hydrographic fields, surface fluxes, and the open boundary conditions (temperature, salinity, and
horizontal velocities).

Compared to previous results obtained in a closed domain, the estimated velocity field shows a
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* Hockey stick graphs (aka motivation for studying submesoscale processes)



Atmospheric carbon dioxide — ice-core data before 1958, Mauna Loa after 1958
(last week, Mauna Loa observations exceeded 430 ppm)
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Atmospheric surface temperature increase since industrial revolution
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The ocean is the climate’s reservoir of heat
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The ocean is the largest active reservoir of carbon
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Question: Can we understand and predict the exchange of
heat, freshwater, carbon, and other properties between the
global ocean and the atmosphere?

Hypothesis: Submesoscale ocean motions (<50 km), both
balanced and unbalanced, play a key role in air-sea exchanges
and vertical property transports in the ocean.
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 Submesoscale and internal-wave admitting global ocean simulations
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Model output available at https://data.nas.nasa.gov/ecco/data.php?dir=/eccodata/llc_4320
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Hyperwall at home (created by David Ellsworth)

https://ecco-group.org/world-of-ecco.htm

Series Scalar Level
128 regions (2-5km) v UVvort (vertical vorticity) v Level 0 (-0.5m) v

Click on one of the 128 images below to see the available animations for UVvort level 0 at that geographic location in
anew tab.

<a

Hyperwall at home capability allows visual
exploration of the hi-res simulation from a
remote workstation.

The buttons below will select a visualization of UVvort (horizontal vorticity) level 0 (depth -0.5 m) located at row 2 column 8
in the 128-region series of animations. The different buttons are for either a MP4 animation or a full size image. Animations
are available for different resolutions and image sizes, and for a range of time steps. The sizes listed are for the MP4.

. I Animation Pixel Resolution and File Size |
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I 5.4 km / 800x600 | 2.7 km / 1600x1200 |
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https://ecco-group.org/world-of-ecco.htm
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Submesoscale (<50km) vertical heat flux @ 40 m
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Vertical heat transport
at submesoscales
(<50km) is an order
magnitude larger than
at mesoscales (>50km).

Note that submesoscale
heat fluxes are up-
gradient, not down-
gradient as is often
assumed in climate-
model vertical mixing
parameterizations.

(Su et al., 2018; 2020)
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e Surface Waves and Ocean Topography (SWOT) mission
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The surface Wave and Ocean Topography (SWOT) mission.
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SWOT can observe submesoscale processes that
cannot be observed with nadir altimetry
(courtesy Matt Archer, JPL).
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SWOT Sea Level Anomaly
(SSA) gradient

chris.henze@nasa.gov
NASA Ames mirror of L2 and L3 SWOT data: /exportl/nmccurdy/public/swot nina.mccurdy@nasa.gov
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Dynamical filter used to separate balanced from unbalanced motions
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SWOT high-wavenumber signals confront our models with a need for improvement

Wavenumber spectra in Kuroshio region
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The wavenumber spectra in global high-resolution models
capture more high-wavenumber activity than gridded
AVISO products made from nadir altimetry, and lie close to
the SWOT spectrum down to about 50 km.

However, the SWOT spectrum has more energy than the
global models at high wavenumbers.

What is this high-wavenumber energy? Internal waves?
Something else? Whatever it is, it is missing from even the
highest-resolution global models.

Wavenumber spectra in region northwest of Hawaii

SSH spectra (m?/ cpkm)

= global LLC4320 simulation
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107> | |m— SWOT data

107 10!
Wavenumber (cpkm)
Our regional simulations (Thakur et al. 2022) feature much finer horizontal and
vertical grid spacing than global LLC4320, and they include remotely generated
internal waves (from global LLC4320) at their lateral boundaries. The regional
models come closer to the SWOT data but are still insufficiently energetic at high
wavenumbers.

So, what is missing? Do we need to improve the global models that serve as
boundary conditions? Do we need even higher resolution in the regional models?

Larger supercomputers would help!
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* Impact of ocean submesoscales on atmospheric storms
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Map of surface current speed from a 1/48° global-ocean
and sea ice simulation carried out using the MITgcm.
Importantly this simulation includes both atmospheric
and tidal forcing and it admits submesoscale eddies and
internal waves.

Preliminary work started in October 2012, with
successful integration 1/48-deg simulation started in
January 2014.

Over 200 science publications make use of output from
this simulation, especially for SWOT pre-launch studies.
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Global, cloud-resolving simulation with GEOS, carried out with
horizontal grid spacing of 1.5-km. Up to one year ago, this was
the highest resolution atmospheric simulation carried out with
any US global model.

Explicit cloud-resolving simulations provide valuable insight on
the ‘grey-zone’ of physics parameterizations, where sub-grid scale
processes are partially resolved.

This engineering demonstration led to rapid development of the
infrastructure of GEOS to support high-resolution global
downscaling applications for climate and weather.



GEOS/ECCO Coupled Model (Simulation 2/2020-4/2021)

Atmosphere+Infrastucture (GEOS GCM)

® Recent GEOS AGCM, including interactive aerosol model + aerosol-cloud interaction

® Horizontal Grid: Cubed Sphere, C1440, approximately 6—7 km grid spacing

® Vertical Grid: Hybrid eta-pressure, 72 levels, approximately 8 levels inside boundary layer, 30 above tropopause
e MAPL (Modeling, Analysis and Prediction Layer) interface to ESMF infrastructure

Ocean (MITgcm/ECCO)

® MITgcm, Hydrostatic primitive equations for velocity, potential temperature and salinity, with an implicit free surface
® Includes tidal forcing

® KPP vertical mixing of Large et al. (1994), non-local term disabled

e Horizontal Grid: Latitude-Longitude-polar-Cap 2160 (LLC2160), approximately 2—4 km grid spacing

® Vertical Grid: 90 levels, 1m resolution near surface, ~300m resolution at 5000m depth

Sea Ice
® Sea Ice Thermodynamics of CICE4.0;
® Sea Ice Advection (each ice thickness category separately) in MITgcm

Atmosphere-Ocean Interface
e “Skin layer” of Price, et al., 1978
e Implicit backward surface flux calculation assures absolute conservation of energy and water across the interface




GEOS/ECCO Coupled Model Output — Visualizations
(Nina McCurdy, David Ellsworth, and others)

Field-by-field animations of GEOS Atmosphere-related output (interpolated to a lat/lon grid):
https://data.nas.nasa.gov/geoseccoviz/geoseccovizdata/c1440 [lc2160/GEQS

Field-by-field animations of MITgcm Ocean-related output (interpolated to a lat/lon grid):
https://data.nas.nasa.gov/geoseccoviz/geoseccovizdata/c1440 [1c2160/MITgcm/

Additional selected fields with native grid visualizations:
https://data.nas.nasa.gov/viz/data.php?dir=/vizdata/nmccurdy/DYAMOND ¢1440 llc2160/native grid

Additional regionally-focused animations:
https://portal.nccs.nasa.gov/datashare/g6dev/WebGL/geos dyamondv2.html



https://data.nas.nasa.gov/geoseccoviz/geoseccovizdata/c1440_llc2160/GEOS
https://data.nas.nasa.gov/geoseccoviz/geoseccovizdata/c1440_llc2160/MITgcm/
https://data.nas.nasa.gov/viz/data.php?dir=/vizdata/nmccurdy/DYAMOND_c1440_llc2160/native_grid
https://portal.nccs.nasa.gov/datashare/g6dev/WebGL/geos_dyamondv2.html
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Ocean eddies observed by SWOT explain 30 to 50% of moisture supply from ocean to atmosphere.
As such, these eddies are a significant driver of the global hydrological cycle.

One key factor is the spatial resolution of ocean eddies and associated currents. High-resolution ocean

currents from SWOT observations, combined with microwave and infrared Sea Surface Temperature (SST)

images, enable reconstruction of SST fronts around mesoscale eddies, which are critical to the estimation

of latent heat fluxes at the air-sea interface and therefore of moisture supply to the atmosphere.
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Ocean submesoscale fronts induce diabatic heating and convective precipitation within storms

'Warm sector]| Cold sector

Convective Mass Flux [kg.m~2.day~1] Convective Mass Flux [kg.m~2.day!]
0 600 1200 1800 2400 3000 0 100 200 300 400 500 600 700 800
L ——— T e ——
4.0—— — — —— 4.0
ANV v, . [windanomaly Wind anomaly Example of submesoscale-
\
/ 12.0 cm.s! B ¥ = = 2 @ & o - < o s LZ..O cm.s!
— 1.0 m.s™! 1.0 m.s™! 1 1 1
38 e S i ol induced convection in the
308 e e B g _ 130 GEOS/ECCO simulation at
, < Ml (i LN . 153°E in Kuroshio region.
x x LA AT = T —
5 2 /4 P A Conv. diabatic heating o 5
= 2 ’ - 8 e 7 ﬂ X
-‘g, 20 ;; & IR 4 / «— gg#r:rontsize - 1 ’ ! 2.0 % Th f Id d
e s XA \ = ¢ - - = /|| % ssTfront location SR i e SR iy ] € lielas are average over
1.5 o Ry RO . . - 7 N\ ow . -~ 5t o e 4 4 72 7115 .
e s, AT X2l s bl it five days (Dec. 16 to Dec. 21)
??;5: ,’;‘7.&;\: \:’;/1/::"“:?//;/ .
s | B, R G
W2l 2 s e DD U U R R g LT for a—c southerly winds and
o R S Ty oy iy A R m Em e
= Po.-"% 2 pe b R B R bbb e d—f northerly winds
osfsE a2 AL e N SNl Eape b iasmmes s y
-—-— - v Py . VoL - X 4l NNt e~ - - 2 , o e . — —
0.0 i i AT 7 S e e R " ] S
; X - 0.0
40.2°N 40.4°N 40.6°N 40.8°N 41.0°N 41.2°N 40.2°N 40.4°N 40.6°N 40.8°N 41.0°N 41.2°N .
al. e 1.007 (Vlvant et al., 2025)
L % -
150 i 128 ® o Lo B
7 £ T £
100 = |8 = X [0:50=
W6 g u loasg
(] . (]
50 6 4 5 406 a
50 km 2 é 6 50 km 0.00 E
O o o OH o -] o 0 8 100 SN ° 30 8
40.2°N 40.4°N 40.6°N 40.8°N 41.0°N 41.2°N E: 40.2°N 40.4°N 40.6°N 40.8°N 41.0°N 41.2°N
s = — 4 =~
T =2 ol i = -
: ElN T, £ 20 f / 5 3 o -
S St 5 8 S| §
= = = = S ——
o T 0 FE g O 0710 FE
& 0 = 2 “ X
= Er1y & 2E| v
@ el N 0 —20 Sl N
; 50 km -8 312 = : = -2 =
40.2°N 40.4°N 40.6°N 40.8°N 41.0°N 41.2°N > 40.2°N 40.4°N 40.6°N 40.8°N 41.0°N 41.2°N o




Outline

* An unexpected twist
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Do Submesoscales
Affect the Large-
Scale Structure of
the Upper Ocean?

(Sinha et al., 2023)

Carry out 50-year
regional simulations
to equilibrate upper
ocean.
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The equilibrium stratification
of the thermocline changes
drastically as the grid spacing
is refined from 16 to 8 km
and mesoscale eddies are
fully resolved.

The thermocline stratification
remains largely unchanged,

however, between the
8-, 4-, and 2-km runs.



Outline

 Summary and concluding remarks



Question: Can we understand and predict the exchange of heat,
freshwater, carbon, and other properties between the global
ocean and the atmosphere?

(or is climate the other dismal science, incompletely observed,
and unboundable in its potentially important pieces?)

A key responsibility of our generation is to start and maintain
key climate-quality time series that can be used by future

generations to better understand, predict, and control the
Earth’s climate.



Hypothesis: Submesoscale ocean motions (<50 km), both
balanced and unbalanced, play a key role in air-sea exchanges
and vertical property transports in the ocean.

Almost certainly yes, but there are surprises, e.g., the study of
Sinha et al. (2023).

What resolution or model parameterizations are sufficient for
climate simulations with descriptive and predictive skill?



