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▶ Thirteen year NSF-funded 
project (2015 - 2027) to 
transform our understanding 
of the Southern Ocean, a 
major sink of carbon and 
heat

▶ Headquartered at 
Princeton/UCSD; involves 
over 85 participants at 14 
partner institutions

▶ Goals:

▶ Deploy over 320 Argo floats 

with BGC sensors

▶ High-resolution modeling 

and state estimation

▶ Outreach

Southern Ocean Climate and Carbon Observations and Modeling 





What is a BGC-Argo float?

Mature sensor suite 

•biooptical sensors: chlorophyll 

fluorescence, backscatter, light 

intensity. 

•chemical species: dissolved 

oxygen, nitrate, and pH.

Ken Johnson, 
MBARI



summary:

use model + observations to 

estimate carbon system over the 

past ~10 years

multi-year estimate = a continuous 

model run, which has closed 

budgets for mass / heat / salt / 

BGC tracers  (DIC, O2, NO3, …)

the output is available online 

(sose.ucsd.edu) for analysis and 

comparisons with models
Snapshot of the simulated dissolved inorganic 

carbon (DIC) concentration at 100 m on February 

1, 2009. Black contours show the mean position of 

Antarctic Circumpolar Current fronts (Orsi 1995). 



1. State estimation4D-Var, “adjoint” method
models are used to hindcast 

the ocean state (T, S, V, SSH)

using inputs: initial conditions & 

atmospheric forcing

adjust those inputs to bring the model 

closer to observations of the actual 

ocean state 

minimize the “cost function” : 

 (weighted model-observations misfit)2 

+  (weighted adjustment to inputs)2 

B-SOSE: biogeochemical + physical state optimized together

* *

*
*

*
*

*

o

e.g. Southern Ocean 2013-2017
e.g. T & S from Argo maps, winds 

& air temp, etc. from ECMWF e.g. from Argo profiles, satellites, … 

new estimate

1st guess

?

?

?

ecco-group.org



The science:
The model is our hypothesis of how the world works. 

We made assumptions for computational efficiency. 

If we understand the ocean, those assumptions will give us the answers we expect. 

If we don’t understand, we must go back and make a new hypothesis – a new model

Can we simulate the observed ocean pCO2?

Once we have a good model (i.e. the forward problem), we 
can better use observations (i.e. the inverse problem)
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• Data assimilation is essentially an automation of the scientific method.
• A hypothesis is made and encoded in a numerical model.
• This model is then used to make predictions that can be tested against new 

observations.
• Prediction accuracy is then examined and provided as feedback to modify the 

model and methods, and the process repeats.

Penny, et al., Observational Needs for Improving Ocean 

and Coupled Reanalysis, S2S Prediction, and Decadal 

Prediction, Front. Mar. Sci., 2019

Slide from Bruce Cornuelle
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2. BGC MODEL

All prognostic and diagnostic variables are estimated; 

can be compared / constrained to observations

Model: N-BLING, 
evolved from 
BLING 



Air-sea CO2 flux [mol m-2 yr -1] 
B-SOSE Iteration 122 solution



3. PRODUCT 2008-2012, 1/3 degree

Verdy and Mazloff (2017), A data assimilating model for estimating Southern Ocean 

biogeochemistry, JGR-Oceans

2013-2021+ in production   

(with SOCCOM BGC-Argo float constraints)



Comparisons with in situ observations

 * Argo profiles (T,S)

 * calibrated bgc-Argo (O2)

 * SOCCOM floats

 * SOCAT (pCO2)

 * GLODAPv2 (carbon, nutrients)

 * CTD (T, S, O2, chl)

 * XBT, MEOP, PIES

 GEOTRACES

Comparisons with estimated 

“quantities of interest”

 air-sea CO2 flux

 Drake Passage pCO2

 nutrient transport across 32°S

Comparisons with gridded products

 * ocean color (chl, POC)

 * altimetry

 * microwave SST

 * sea ice 

 Argo monthly mapped product

 GLODAPv2, WOA13, SOCAT 

climatologies

 Landschützer monthly mapped product

validation *  = assimilated



Comparisons with gridded products

200 m DIC in B-SOSE 2013-2017 is compared to GLODAPv2

mean difference

standard dev. difference



Comparisons with in situ observations

7 m O2 in B-SOSE 2013-2017 is compared to bgc-Argo



Comparisons with “quantities of interest”

Monthly-averaged 

pCO2 in Drake 

Passage (75°W to 

55°W, south of 50°S) 

from SOCATv4 

observations (black) 

[Bakker et al., 2016; 

Munro et al., 2015a, 

2015b], and from B-

SOSE (area average 

in pink; subsampled at 

the location of 

observations in red). 

Summer months are 

shaded gray.

pCO2 in B-SOSE 2008-2012 is compared to Drake Passage time series



B-SOSE & climatology
with SOCCOM float observations



B-SOSE vs Landschutzer CNN



B-SOSE vs climatology



Budgets

Rosso et al. (2017), Space and time variability of the Southern Ocean carbon budget. JGR-Oceans.

DIC in the top 650 m, 2008-2012
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Error in adjoint sensitivities 

relative to the true sensitivities from 

finite difference perturbation 

experiments.   

Depth-integrated sensitivity of the pH cost function to DIC 

after 3, 30, and 300 days of adjoint integration. 

Units are (micromol C/ kg)-1 /m. 



Sensitivity to the B-SOSE controls 
for the physical constraints (blue) 
and biogeochemical constraints 
(yellow) during 2008 in the prior 
run. 

Sensitivities are normalized by the 
uncertainty on each control and the 
root mean square (r.m.s.) is plotted.

Controls are: initial conditions for potential 
temperature, salinity, and six 
biogeochemical tracers (DIC, alkalinity, 
oxygen, nitrate, phosphate, and iron) as 
well as timevarying atmospheric state 
(surface air temperature, surface air 
humidity, precipitation, shortwave 
downwelling radiation, zonal wind speed, 
and meridional wind speed). 



Mean air-sea flux 

of CO2 for 2008–

2011 

(a) BSOSE

(c) Landschutzer 

et al. [2015].

 Positive fluxes 

are into the 

atmosphere

(b) Uncertainty of the 

B-SOSE air-sea CO2 

flux estimated from an 

ensemble sensitivity 

experiment. The 

maximum uncertainty 

value is estimated to be 

1.00 mol/m2/yr. 

(d) Difference in air-sea 

CO2 flux between the 

state estimate and the 

‘‘prior,’’ forward model 

run. The magnitude of 

the correction resulting 

from data assimilation 

exceeds the uncertainty 

estimate in > 70% of 

domain. 



The science:
The model is our hypothesis of how the world works. 

We made assumptions for computational efficiency. 

If we understand the ocean, those assumptions will give us the answers we expect. 

If we don’t understand, we must go back and make a new hypothesis – a new model

Can we simulate the observed ocean pCO2?

Once we have a good model (i.e. the forward problem), we 
can better use observations (i.e. the inverse problem)
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Surface ocean pCO2 comparisons to data 

Product SOCAT fCO2 Float canyon pCO2

MPI SOM-FFN pCO2 17.9 48.2

LDEO-HPD fCO2 17.7 46.8

fCO2-Residual fCO2 23.5 49.6

B-SOSE I154 pCO2 23.4 43.5

root-mean-square (RMS) differences between the products and the data in µatm



Surface ocean pCO2 comparisons to data 
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Surface ocean pCO2 comparisons to data 



Surface 
ocean pCO2 
comparisons 

to data

More data (informed 
from OSSEs) will 

improve consistency 
and reduce 

uncertainty 
Units are µatm.



Control run:

pCO2 optimization (in progress by Angela Kuhn)

Optimized run:

Corrects seasonal phasing and spatial biogeochemical dynamics 



Gloege et al. 2022 JAMES, 

Bennington et al. 2022a GRL

Bennington et al. 2022b JAMES

Landschützer et al. 2016 GBC
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Surface ocean pCO2 

comparisons to data 





BGC-Southern Ocean State Estimate (B-SOSE)

Mazloff et al. (2023). Southern Ocean Acidification 
Revealed by Biogeochemical-Argo floats. JGR-Oceans



Getting the products

B-SOSE output: sose.ucsd.edu

+ validation

+ documentation

MITgcm BLING model and adjoint:  github.com/MITgcm/MITgcm

• netCDF

• CF compliant

• available for model 

     comparisons!



summary:

use model + observations to 

estimate carbon system over the 

past ~10 years

multi-year estimate = a continuous 

model run, which has closed 

budgets for mass / heat / salt / 

BGC tracers  (DIC, O2, NO3, …)

the output is available online 

(sose.ucsd.edu) for analysis and 

comparisons with models
Snapshot of the simulated dissolved inorganic 

carbon (DIC) concentration at 100 m on February 

1, 2009. Black contours show the mean position of 

Antarctic Circumpolar Current fronts (Orsi 1995). 



• Extra slides related to projects



Angela Kuhn, et al. 2025. Sensitivity of chlorophyll vertical structure to model parameters in the Biogeochemical Southern Ocean 

State Estimate (B-SOSE). JGR: Biogeosciences. https://doi.org/10.1029/2024JG008300

https://doi.org/10.1029/2024JG008300


Assimilating ocean color observations

cost function = surface chlorophyll from VIIRS satellite, 2013

red = where adding iron would reduce the misfit with observations



Model: N-BLING, evolved from BLING 

Proposed code additions to code to enable radiative transfer module
(Proposed by Angela Kuhn) 


