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A synthesis of Verdy and Mazloff et al 2017 study,
"A data assimilating model for estimating Southern Ocean biogeochemistry”

ECCO Summer School
May 27, 2025
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| Matt Mazloff
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Biogeochemical Southern Ocean State Estimate UC San Diego
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Southern Ocean Climate and Carbon Observations and Modeling

» Thirteen year NSF-funded
project (2015 - 2027) to -
transform our understanding &
of the Southern Ocean, a
major sink of carbon and
heat

Headquartered at
Princeton/UCSD; involves
over 85 participants at 14
partner institutions

Goals:

» Deploy over 320 Argo floats
with BGC sensors

High-resolution modeling
and state estimation

Outreach




1 Total floats 1 Active floats

90°E 180°W 90°W
Smaller circles = inactive floats




-  fluorescence, backscatter, light
L intensity.

&Y .chemical species: dissolved
oxygen, nitrate, and pH.
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summary:

use model + observations to
estimate carbon system over the
past ~10 years

multi-year estimate = a continuous




4D-Var, “adjoint” method 1. State estimation

models are used to hindcast using inputs: initial conditions & adjust those inputs to bring the model
the ocean state (T, S, V, SSH) atmospheric forcing closer to observations of the actual
= = ocean state

a2




The science:

The model is our hypothesis of how the world works.
We made assumptions for computational efficiency.




Penny, et al., Observational Needs for Improving Ocean
and Coupled Reanalysis, S2S Prediction, and Decadal
Prediction, Front. Mar. Sci., 2019

* Data assimilation is essentially an automation of the scientific method.
* A hypothesis is made and encoded in a numerical model.
* This model is then used to make predictions that can be tested against new

observations.
* Prediction accuracy is then examined and provided as feedback to modify the
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Alllprognosticjand [diagnostic variables are estimated,
can be compared / constrained to observations
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3. PRODUCT 2008-2012, 1/3 degree

Verdy and Mazloff (2017), A data assimilating model for estimating Southern Ocean
biogeochemistry, JGR-Oceans
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Va | idation * = assimilated

Comparisons with gridded products
* ocean color (chl, POC)
* altimetry
* microwave SST
* seaice
Argo monthly mapped product
GLODAPvVZ2, WOA13, SOCAT
climatologies

Landschutzer monthly mapped product
Comparisons with in situ observations

* Argo profiles (T,S)

* calibrated bgc-Argo (O,)

* SOCCOM floats

* SOCAT (pCO,)

* GLODAPV2 (carbon, nutrients)
*CTD (T, S, O,, chl)

* XBT, MEOP, PIES
GEOTRACES

Comparisons with estimated
“quantities of interest”

air-sea CO, flux

Drake Passage pCO,

nutrient transport across 32°S




Comparisons with gridded products
200 m DIC in B-SOSE 2013-2017 is compared to GLODAPv2
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Comparisons with “quantities of interest”
pCO, in B-SOSE 2008-2012 is compared to Drake Passage time series

——SOCATVv4
B-SOSE
—— B-SOSE subsampled

v

2009 2010 2011 2012 2013

Monthly-averaged
pCO, in Drake
Passage (75°W to
55°W, south of 50°S)
from SOCATVv4
observations (black)
[Bakker et al., 2016;
Munro et al., 2015a,
2015b], and from B-
SOSE (area average
in pink; subsampled &
the location of
observations in red).
Summer months are
shaded gray.




B-SOSE & climatology
with SOCCOM float observations

APR 2014
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B-SOSE vs Landschutzer CNN
JAN 2013 Landschutzer
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pCO2 (patm) at 2 m
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B-SOSE vs climatology
JAN 2013 GLODAPV2

DIC (zmol/kg) at 10 m
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Rosso et al. (2017), Space and time variability of the Southern Ocean carbon budget. JGR-Oceans.




a) pH cost function

30 300
length of adjoint run (days)







b) uncertainty

mol/m?/yr



The science:

The model is our hypothesis of how the world works.
We made assumptions for computational efficiency.




SOCCOM Surface ocean pCO2 comparisons to data

root-mean-square (RMS) differences between the products and the data in patm

MP| SOM-FFN pCQO2 17.9 48.2
LDEO-HPD fCO2 17.7 46.8
fCO2-Residual fCO2 23.5 49.6

B-SOSE 1154 pCO2 23.4 43.5



)) SOCCOM

Surface ocean pCO2 comparisons to data

RMS diff of products to SOCAT (solid) and Argo (dashed)
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Surface ocean pCO2 comparisons to data
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Surface
ocean pCO2
comparisons

to data
More data (informed
from OSSEs) will

improve consistency
and reduce

uncertainty
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Sep 2019 - Aug 2020

pCO2 optimization (in progress by Angela Kuhn)

Corrects seasonal phasing and spatial biogeochemical dynamics

Control run:

control

double

6 0 half y,

-1% alkalinity initial conditions

Optimized run:

correlation pco2 vs T
T

pCO2 bias (B-SOSE - SOCAT), atm
o N S
—
——— ——
= =
= ——
_ | = -
=
————
= =
T ——
é‘

Temporal and spatial surfface pCO2 patterns
will be optimized using both BGC-Argo and
SOCAT observations.
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RMS diff of products to SOCAT (solid) and Argo (dashed)
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BGC-Southern Ocean State Estimate (B-SOSE)

Depth [m]

750

1050

pH difference
°

1500

1) we make a bias-corrected pH climatology
[available at http://sose.ucsd.edu/]
by removing the objectively mapped misfits
between B-SOSE and bcg-Argo float data

2) we compare that pH climatology to ship data to detect trends
(up to -0.02 per decade) in 5 frontal zones and 5 depths

3) we can explain the trends in the context of the
meridional overturning circulation

002 Mazloff et al. (2023). Southern Ocean Acidification

SAZ

STZ

pH trend

i Revealed by Biogeochemical-Argo floats. JGR-Oceans




Getting the products

B-SOSE output: sose.ucsd.edu
+ validation r

+ documentation f
* netCDF

Ocean State Estimation at Scripps @SR s ] C F com p | | ant
e available for mode
comparisons!

UC San Diego

HOME PRODUCTS PEOPLE BIBLIOGRAPHY TERMS OF USE

ECCC Our group i to the and lion of regional ocean state estimation using the methodology
developed by the ECCO consortium ( ecco.jpl.nasa.gov ). The ECCO code is based on the MIT general circulation model (MITgcm) and
employs automatic/algorithmic differentiation (AD) tools for generating tangent linear and adjoint code for ocean circulation and climate
studies. The goal is to produce a model- i is, with i ics and closed budgets for all tracers, to be used for
scientific analysis. We are currently working on:

California Current System Tropical Pacific Ocean State
Estimate (SOSE) State Estimate (CASE) Estimate (TPOSE)
The latest product, b-SOSE, is a physical- Short- and long-term reanalyses synthesize Observations from the TPOS constrain 4-month

biogeochemical state estimate produced as part observations of the California Current System. state estimates.
of the SOCCOM project
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summary:

use model + observations to
estimate carbon system over the
past ~10 years

multi-year estimate = a continuous




* Extra slides related to projects



Angela Kuhn, et al. 2025. Sensitivity of chlorophyll vertical structure to model parameters in the Biogeochemical Southern Ocean
State Estimate (B-SOSE). JGR: Biogeosciences. https://doi.org/10.1029/2024JG008300
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Turbulence, species succession, and susceptibility to grazing are key
parameterizations for development of subsurface chlorophyll maxima in
300 - the Southern Ocean.
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https://doi.org/10.1029/2024JG008300

Assimilating ocean color observations

cost function = surface chlorophyll from VIIRS satellite, 2013
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sensitivity of VIIRS chl to iron at 200 m
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red = where adding iron would reduce the misfit with observations
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Model: N-BLING, evolved from BLING

surface irradiance s 22
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absorption & scattering

RADIATIVE TRANSFER MODULE

=
=
=~
3
=
i)
=
[}
=1

4

absorption &
scattering

PRIMARY PRODUCTION
uptake

remineralization

air-sea flux

remineralization

DISSOLVED ORGANIC
MATTER

scavenging
NUTRIENTS /L

remineralization

uonezijesouiwal

CARBONATE SYSTEM
'

Proposed code additions to code to enable radiative transfer module

(Proposed by Angela Kuhn)



