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Atmospheric CO2 is rising due to human emissions
Ocean and terrestrial biosphere absorb ~50% of emissions

Fossil Fuels Land Biosphere Ocean

Atmosphere

~10 PgC/yr ~ 2 PgC/yr (net) ~ 3 PgC/yr (net)
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Global Carbon Budget

Friedlingstein et al. 2025, ESSD
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Reduced uncertainty in ocean and land sinks required to usefully 
detect emissions mitigation

© 2020 Lamont-Doherty Earth Observatory 4

Peters et al. 2017 Nature Climate Change

Black = Observed Atmospheric Growth Rate

Gray = Reconstruction (Emission–Land–Ocean)

Standard Deviation(Gray – Black) = 3 GtCO2/yr
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Outline

• Key processes of the ocean carbon cycle

• Improving quantification of the ocean carbon sink 

• Models: evaluate ML-based data product skill, given sampling

• pCO2 data products: apply to identify model mean-state biases

• Models and data: combine using ML

• marine Carbon Dioxide Removal (mCDR) – quantifying “additionality”? 
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Air-sea CO2

fluxes vary 

across space 

and time

Air-sea CO2 Flux

ECCO-Darwin Model 

Carroll et al. 2020, 2022
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𝐴𝑖𝑟 𝑠𝑒𝑎 𝐶𝑂2 𝑓𝑙𝑢𝑥
= 𝑘𝑤𝑆𝐶𝑂2 1 − 𝑓𝑖𝑐𝑒 𝒑𝑪𝑶𝟐

𝒐𝒄𝒆𝒂𝒏 − 𝒑𝑪𝑶𝟐
𝒂𝒕𝒎

Crisp et al., 2022, Review of Geophysics

Surface ocean pCO2 is primary control on air-sea CO2 flux

If pCO2
ocean > pCO2

atm  flux is out of ocean (positive)
If pCO2

ocean < pCO2
atm flux is into ocean (negative)

pCO2
atm

pCO2
oceanpCO2

ocean

e.g. Tropical Pacific e.g. North Atlantic

pCO2

Flux
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Ocean Inorganic Carbon Cycle

Doney 2006 Scientific American
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13Williams_Fig. 6.5

SOLUBILITY

Ko is an inverse function of 

temperature

For same [CO2
*], pCO2 is 

higher at high temperature, 

thus warm waters outgas 

and cold waters absorb CO2

𝐾𝑜 =
[𝐶𝑂2

∗]

𝑝𝐶𝑂2

Type equation here.

𝑝𝐶𝑂2 =
[𝐶𝑂2

∗]

𝐾𝑜
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Solubility and physical transport
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~5-10 PgC/yr
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Ocean primary productivity from NASA SeaWiFS satellite

Dark blue = very low chlorophyll; green = moderate chlorophyll; red = very high 
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Biological carbon cycling in the ocean

DIC = Dissolved 

Inorganic Carbon
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Productivity is structured by nutrients distributions, in turn set by the 

circulation 



19Williams_Fig. 5.15

Nutrient cycling between biomass and inorganic nutrients



20Williams_Fig. 5.15

Biogeochemical Cycling = Coupled carbon and nutrient cycles

DIC = Dissolved Inorganic Carbon

, Nutrients

, Nutrients
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Simplified photosynthesis

CO2 + H2O + energy              CH2O + O2

More realistic

106CO2 + 16NO3
- + H2PO4

- + 122H2O + energy

C106H246O110N16P + 138O2

Quantitative links 
between Carbon, 
Nutrients (N,P), 

Oxygen 



22Williams_Plate-6

Global, full-depth data
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Updated Redfield

C:N:P:-O2 = 117(±14):16(±1):1:-170(±10)
Anderson and Sarmiento, 2004  



24Williams_Plate-6

Oxygen distribution is inverse 

of nutrients and DIC
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26Williams_Fig. 5.15

Biogeochemical Cycling = Coupled carbon and nutrient cycles

DIC = Dissolved Inorganic Carbon

, Nutrients

, Nutrients
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Williams and Follows Fig 8.1

Circulation redistributes carbon and nutrients 

(along dotted red line above)

H

L

H L

Winds + Coriolis force 

leads to mass 

convergence, divergence 

at surface; causing Highs 

and Lows in surface height

Pumping Suction

Horizontal flows lead 

to vertical motions; 

advecting carbon and 

nutrients

L

H
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Circulation redistributes carbon and nutrients 

http://rses.anu.edu.au/research/projects/southern-ocean-circulation

S. Ocean 
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𝐴𝑖𝑟 𝑠𝑒𝑎 𝐶𝑂2 𝑓𝑙𝑢𝑥
= 𝑘𝑤𝑆𝐶𝑂2 1 − 𝑓𝑖𝑐𝑒 𝒑𝑪𝑶𝟐

𝒐𝒄𝒆𝒂𝒏 − 𝒑𝑪𝑶𝟐
𝒂𝒕𝒎

Crisp et al., 2022, Review of Geophysics

Surface ocean pCO2 is primary control on air-sea CO2 flux

If pCO2
ocean > pCO2

atm  flux is out of ocean (positive)
If pCO2

ocean < pCO2
atm flux is into ocean (negative)

pCO2
atm

pCO2
oceanpCO2

ocean

e.g. Tropical Pacific e.g. North Atlantic

pCO2

Flux
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~5-10 PgC/yr
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Note that the Biological Pump is 

not shown here. This is because 

we do not have evidence of it 

HAVING CHANGED due to 

anthropogenic drivers. 

Thus, estimates of the 

anthropogenic sink assume a 

steady-state biological pump. 

~5-10 PgC/yr
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Three independent approaches constrain the ocean carbon sink

1. Interior observations / products 

Interior carbon storage

Decadal closure of global budget

Model validation

DIC from GLODAP
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Decadal Interior Data: Shows ocean following atmospheric pCO2

Müller, Gruber et al. 2023, AGU Advances
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Decadal Interior Data: Shows ocean following atmospheric pCO2

Müller, Gruber et al. 2023, AGU Advances

The fact that the ocean ANTHROPOGENIC carbon 

content has grown in parallel to rising atmospheric CO2

levels indicates that the ocean carbon sink can be 

understood as “Henry’s Law”, operating at the 

global scale, and supports the assumption that the 

biological pump is not changing. 
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Three independent approaches constrain the ocean carbon sink

1. Interior observations / products 

Interior carbon storage

Decadal closure of global budget

Model validation

DIC from GLODAP

2. Modeling 

Air-sea fluxes 

Mechanisms 

Projections

ASTE-BGC 

air-sea CO2 flux

Moseley et al, in review
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Ocean biogeochemical models

Circulation

ASTE-BGC 

air-sea CO2 flux

+ Carbon 

Processes 
= Air-sea CO2 fluxes 

On a 3D grid, calculate circulation and carbon fluxes by integrating over time the  

equations of motion, conservation, biology and carbon chemistry

Moseley et al, in review



Models 

support 

process 

knowledge

Lauderdale et al. 2016
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3. Surface ocean pCO2 data used in reconstructions

Bakker et al. 2016 ESSD
Pfeil et al., Sabine et al. 2013 ESSD

SOCAT pCO2

1957-present
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3. Monthly pCO2 data are very sparse …

June 

2016
All data

~2% coverage at 1x1 degree
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3. Data-based “Products” built with v. sparse pCO2 data and ML

2. Predict pCO2 = f(SST, SSS, MLD, Chl, xCO2)

SST

MLD
SSS

Chl
xCO2

pCO2

SST

MLD
SSS

Chl
xCO2

pCO2

1. Train Machine Learning on sparse data

Monthly 

Flux

1 month ~ 2% coverage 

3. Calculate Flux from pCO2

Monthly

fCO2 at 

1ox1o

SOCAT pCO2,1957-2023
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Global Ocean Carbon flux, GCB2023 m odels (1std shading)

Models

Products

Interior

Growing 

sink

Models, products from Friedlingstein et al. 2023

Interior from Müller et al. 2023

Globally integrated estimates agree, with ~30% uncertainty

Total spread

±0.7 PgC/yr

1 spread
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Outline

• Key processes of the ocean carbon cycle

• Improving quantification of the ocean carbon sink 

• Models: evaluate ML-based data product skill, given sampling

• pCO2 data products: apply to identify model mean-state biases

• Models and data: combine using ML

• marine Carbon Dioxide Removal (mCDR) – quantifying “additionality”? 
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pCO2 data are very sparse: Are reconstructions robust? 

~2% coverage at 1x1 degree
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ESM Large Ensembles as testbed for reconstruction skill

SST

MLD
SSS

Chl
xCO2

pCO2

50 to 100 ensembles 

from 4 or 9 ESMs

1. Sample model member as 

SOCAT monthly pCO2 product

2. Train, evaluate, test

3. Estimate monthly 

varying pCO2 on global 

scale using trained 

model, calculate flux

4. Statistically compare reconstructed 

CO2 flux to model truth. Each spatial 

point is temporally decomposed

X ensemble

members

With various ML reconstructions 

• MPI-SOMFFN (Gloege et al. 2021)

• NN, RF, XGB (Stamell et al. 2020)

• pCO2-Residual (Bennington et al. 2022, Heimdal et 

al, 2024a,b; Heimdal et al. in press)

CESM 002

reconstruction

….

….

Luke Gloege

Earth System Models provide pCO2

and drivers (SST, Chl, etc)

Thea Heimdal
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Skill evaluation: temporal decomposition

46

Ensemble member Reconstruction

Each location in each member and reconstruction decomposed 
into seasonal, decadal, and sub-decadal variability

detrend

Detrended Dec. var. Sub-dec. var.

++=

SeasonalFull Signal

Gloege et al. 2021, GBC
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Bias is small globally; larger where data sparse

100-member mean

1985-2016

MPI-SOMFFN 

Global avg = -0.01 molC m-2 yr-1

Gloege et al. 2021, GBC

bias

Model Reconstruction

Gloege et al. 2021, GBC
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Correlation
Is the reconstruction in phase with the original data?

• Captures seasonal cycle well everywhere

• Decadal phase is more challenging to reconstruct

S
e
a
s
o
n
a
l

D
e
c
a
d
a
l

Ensemble mean

Gloege et al. 2021, GBC

Model Reconstruction

100-member mean

1985-2016

MPI-SOMFFN 
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Standard deviation of % error
Does the reconstruction capture the amplitude of variability?

• Globally the seasonal cycle is overestimated by ~7%

• Overestimates decadal variability in Southern Ocean by ~39%

S
e
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a
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c
a
d
a

l

Gloege et al. GBC 2021

100-member mean

1985-2016

MPI-SOMFFN 
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Models

Products

Interior

Growing 

sink

Models, products from Friedlingstein et al. 2023

Interior from Müller et al. 2023

Total spread

±0.7 PgC/yr

1 spread

Reduced decadal amplitude in products should increase agreement 
between products and models 
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Take home messages

• Air-sea CO2 flux mean and seasonality can be reconstructed from sparse 
pCO2 data, but longer-timescale variability remains uncertain 
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Outline

• Key processes of the ocean carbon cycle

• Improving quantification of the ocean carbon sink 

• Models: evaluate ML-based data product skill, given sampling

• pCO2 data products: apply to identify model mean-state biases

• Models and data: combine using ML

• marine Carbon Dioxide Removal (mCDR) – quantifying “additionality”? 
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Ocean models have significant mean-state errors

Fay and McKinley 2021

9 models biased low, large spread

Amanda Fay

Products and 

hindcast models 

for real fluxes 

1990-2018

7 products, consistent long-term mean
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Ocean models have significant mean-state errors

55

Independent data 

observation-based 

products

Surface ocean pCO2 data (SOCAT)

Standard 

Deviation

Correlation

Bennington et al., 2022

Gloege et al. 2021, Fay and McKinley 2021

Global

Ocean 

Models

Model + product pCO2 validation with GLODAP
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Mean-state biases are retained 
in CMIP6 projections 

CMIP6

3-6 ensemble means 

for each scenario

Ocean Carbon Sink (PgC/yr)

McKinley et al. 2023, ERL

Future Emissions and Ocean Sink

EMISSIONS

OCEAN SINK 

Colors = CMIP6

Gray = MAGICC7
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Mean-state biases are retained in CMIP6 projections 

Example CMIP6 (IPSL)
Zonal average of this 

comparison: 

7 models (colors)

8 products (black/gray)

Modern Zonal-meanModern = 2010-2020 Flux

McKinley et al. 2023, ERL
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Mean-state biases are retained in CMIP6 projections 

Future Flux change

Example CMIP6 (IPSL)

Note: expanded scale

SSP5-8.5

Zonal average of this 

comparison: 

7 models (colors)

8 products (black/gray)

Modern Zonal-meanModern = 2010-2020 Flux

McKinley et al. 2023, ERL
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Mean-state biases are retained in CMIP6 projections 
Future Flux change

Example CMIP6 (IPSL)
Zonal average of this 

comparison: 

7 models (colors)

8 products (black/gray)

Modern Zonal-meanModern = 2010-2020 Flux

McKinley et al. 2023, ERL
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Take home messages

• Air-sea CO2 flux mean and seasonality can be reconstructed from sparse 
pCO2 data, but longer-timescale variability remains uncertain 

• Hindcast and Earth System Models have significant mean-state biases
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Current models do not suggest 

significant biological pump change 

through 2100.

…. But these models have many 

deficiencies. If the biological pump 

does change, it could have major 

impacts on atmospheric CO2 .

~5-10 PgC/yr
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Outline

• Key processes of the ocean carbon cycle

• Improving quantification of the ocean carbon sink 

• Models: evaluate ML-based data product skill, given sampling

• pCO2 data products: apply to identify model mean-state biases

• Models and data: combine using ML

• marine Carbon Dioxide Removal (mCDR) – quantifying “additionality”? 
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Using ML to combine models and data improves 
surface flux estimates (LDEO-HPD)

• pCO2
model as priors 

• Reconstruct pCO2
misfit = (pCO2

model - pCO2
SOCAT)

(driver data: SST, SSS, Chl-a, MLD, time, location)

• eXtreme Gradient Boost (XGB) algorithm 

• Misfits to correct N models; average for final pCO2

Gloege et al. 2022 JAMES (N=9), Bennington et al. 2022 GRL (N=8)

+ SOCAT pCO2

= ෣𝑝𝐶𝑂2

MODELS

Luke Gloege

Val Bennington
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Full-coverage, monthly misfits illustrate substantial model biases

pCO2
misfit (uatm)Gloege et al. 2022, JAMES

PRINCETON
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Using ML to combine models and data improves 
surface flux estimates (LDEO-HPD)

• pCO2
model as priors 

• Reconstruct pCO2
misfit = (pCO2

model - pCO2
SOCAT)

(driver data: SST, SSS, Chl-a, MLD, time, location)

• eXtreme Gradient Boost (XGB) algorithm 

• Misfits to correct N models; average for final pCO2

Gloege et al. 2022 JAMES (N=9), Bennington et al. 2022 GRL (N=8)

+ SOCAT pCO2

= ෣𝑝𝐶𝑂2

MODELS

Luke Gloege

Val Bennington
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Global air-sea CO2  flux

Models
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LDEO-HPD hybrid model-data approach offers improved skill

GLODAP

observation-based 

products

Surface ocean pCO2 data (SOCAT)

Standard 

Deviation

Correlation

Bennington et al., 2022

Gloege et al. 2021, Fay and McKinley 2021

LDEO-HPD

Global

Ocean 

Models

Model + product pCO2 validation with GLODAP
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From where does this enhanced skill arise? 

GLODAP

Surface ocean pCO2 data (SOCAT)

Standard 

Deviation

Correlation

Bennington et al., 2022

Gloege et al. 2021, Fay and McKinley 2021

LDEO-HPD

Global

Ocean 

Models

Model + product pCO2 validation with GLODAP
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Climatological model-data misfits much larger than interannual 

Princeton Model, others similar Bennington et al. 2022 GRL
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Since climatological misfit dominates, how much skill is gained by applying 
only this as correction, as opposed to interannual correction?

1959 20201982

LDEO-HPD = Model pCO2 + Interannual Misfit HPD: Model pCO2 + Climatological Misfit 

Observations

Begin

Model Period

Begins

HPDClimTest = Model pCO2 + 

Climatological Misfit  

Bennington et al. 2022 GRL

• HPDClimTest applies the 2000-2020 climatology of the model-observation misfit



71

Global air-sea CO2  flux
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Most of the improvement comes from the climatological correction

GLODAP

Surface ocean pCO2 data (SOCAT)

Standard 

Deviation

Correlation

Bennington et al., 2022

Gloege et al. 2021, Fay and McKinley 2021

LDEO-HPD

Global

Ocean 

Models

Model + product pCO2 validation with GLODAP
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Taking advantage of the climatological misfit being the biggest 
source of model error, we extend back to 1959

• HPDClimTest applies the 2000-2020 climatology of the model-observation misfit

• Since the climatological correction provides most of the additional skill, we use it 

to correct models in the pre-observed period

1959 20201982

LDEO-HPD = Model pCO2 + Interannual Misfit 
LDEO-HPD = Model pCO2 +

Climatological Misfit 

Observations

Begin

Model Period

Begins

HPDClimTest = Model pCO2 + 

Climatological Misfit  

Bennington et al. 2022 GRL
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Global air-sea CO2  flux

Climatological correction

1959-1982

Interannually varying correction

1982-2020
Bennington et al. 2022 GRL
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LDEO-HPD: 60+ years of air-sea CO2  fluxes

Bennington et al. 2022 GRL

• 60+ years of monthly 1x1 air-sea CO2 fluxes

• Significant decadal variations; coherent 

between equatorial Pacific and Southern 

Ocean

Detrended Basin Flux Anomalies
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Take home messages

• Air-sea CO2 flux mean and seasonality can be reconstructed from sparse 
pCO2 data, but longer-timescale variability remains uncertain 

• Hindcast and Earth System Models have significant mean-state biases

• Correcting models with data offers improved skill and 60+ years of 
reconstructed monthly surface ocean pCO2
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Outline

• Key processes of the ocean carbon cycle

• Improving quantification of the ocean carbon sink 

• Models: evaluate ML-based data product skill, given sampling

• pCO2 data products: apply to identify model mean-state biases

• Models and data: combine using ML

• marine Carbon Dioxide Removal (mCDR) – quantifying 
“additionality”? 
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Interior

Growing 
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Models, products, CDR from Friedlingstein et al. 2023

Interior from Müller et al. 2023

“novel” CDR is imperceptible with respect to the ocean sink 

Current 

“novel” 

CDR  

≈0.000003 

PgC/yr

-

1 spread

Total spread

±0.7 PgC/yr
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Marine Carbon Dioxide Removal
mCDR

• Efficacy? 

• Safety? 

• Durability?

• Additionality? 

NASEM 2021
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10-year mean modeled 

pCO2 anomaly with OAE 

mCDR pCO2 impacts

Wang et al. 2022
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Global approaches potential for time-space resolved baseline

ASTE-BGC 

air-sea CO2 flux

Models 

Surface pCO2 data products

Air-sea fluxes (monthly)

Model validation

SOCAT

pCO2

AI/ML
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Air-sea flux uncertainties at smaller space-time scales are huge
Uncertainties are estimated here as difference between individual estimates

LDEO-HPD - pCO2-Residual

pCO2-Residual – GOBM A GOBM A – GOBM B 

Product-product

Product-model

Product-model

Model-model

Local differences are same magnitude as long-term mean flux

May 2010
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Independent pCO2 to assess product and model skill, 2000-2023

SOCAT pCO2,1980-present

LDEO pCO2,1980-2019

GLODAP

Hydrography TimeseriesSurface pCO2

N2000-2023=1,043

N2000-2023=273,520

N2000-2023=123,349

NBATS
2000-2023=225

McKinley et al. in prep
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Independent pCO2 to assess product and model skill

SOCAT pCO2,1980-present

LDEO fCO2,1980-2019

GLODAP

Hydrography TimeseriesSurface pCO2

N2000-2023=1,043

N2000-2023=273,520

N2000-2023=123,349

NBATS
2000-2023=225

Models can be compared to all

Products are trained with SOCAT, so remove this 

and any SOCAT points in LDEO from analysis

Comparison to 10 models, 10 products of GCB2024

McKinley et al. in prep



85

2000-2023 10 Product mean 10 Model mean

LDEO + GLODAP 
(n=12,590)

28.0 atm

r=0.80

SOCAT + GLODAP 
(n=285,256)

32.9 atm

r=0.63

RMSE and correlation

Global pCO2: Models vs. products, and vs. independent data    

LDEO+GLODAP vs. Products

One Product - Data One Model - Data



86

Biomes are mechanistically similar; use these for temporal 
decomposition 

Fay and McKinley, 2013

North Pacific Subpolar Permanently

Stratified (NP SPSS)

McKinley et al. in prep
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N. Pacific SPSS: Models and products vs. independent data 

LDEO+GLODAP vs. Products

Timeseries 

Products Models

2000-2023 10 Product mean 10 Model mean

LDEO + GLODAP 
(n=1,240)

54.3atm

r=0.77

SOCAT + GLODAP 
(n=23,109)

54.4atm

r=0.30

RMSE and correlation
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N. Pacific SPSS: Climatological 

2000-2023 10 Product mean 10 Model mean

LDEO + GLODAP 
(n=1,240)

50.7 atm

r=0.81

SOCAT + GLODAP 
(n=23,109)

47.4 atm

r=0.28

RMSE and correlation

Products Models

Feb    Apr   Jun    Aug      Oct     Dec           Feb    Apr     Jun     Aug    Oct    Dec 

McKinley et al. in prep
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N. Pacific SPSS: Remove climatology

2000-2023 10 Product mean 10 Model mean

LDEO + GLODAP 
(n=1,240)

18.9atm

r=0.50

SOCAT + GLODAP 
(n=23,109)

23.2atm

r=0.54

RMSE and correlation
Product, Model, Datasets 

Trends = 1.9-2.1 uatm/yr

Products Models

McKinley et al. in prep
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N. Pacific SPSS: Remove trend

2000-2023 10 Product mean 10 Model mean

LDEO + GLODAP 
(n=1,240)

18.9atm

r=0.23

SOCAT + GLODAP 
(n=23,109)

23.2atm

r=0.14

RMSE and correlation

Products Models

McKinley et al. in prep
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Take home messages

• Air-sea CO2 flux mean and seasonality can be reconstructed from sparse 
pCO2 data, but longer-timescale variability remains uncertain 

• Hindcast and Earth System Models have significant mean-state biases

• Correcting models with data offers improved skill and 60+ years of 
reconstructed monthly surface ocean pCO2

• Current models and data products have local uncertainties orders of 
magnitude larger than expected mCDR impacts



Viviana Acquaviva (professor, CUNY), Ce Bian (postdoc), Galen McKinley

Thea Heimdal (scientist), Abby Shaum (PhD student), Amanda Fay (senior scientist)

Thank you!
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Biomes are mechanistically similar; use these for temporal 
decomposition 

Fay and McKinley, 2013

North Pacific Subtropical Permanently 

Stratified (NP STPS)

North Pacific Subpolar Permanently

Stratified (NP SPSS)

McKinley et al. in prep
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N. Pacific STPS: Models and products vs. independent data 

LDEO+GLODAP vs. Products

Products Models

2000-2023 10 Product mean 10 Model mean

LDEO + GLODAP 
(n=1,931)

12.3atm

r=0.91

SOCAT + GLODAP 
(n=41,820)

18.3atm

r=0.88

RMSE and correlation
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N. Pacific STPS: Climatological 

2000-2023 10 Product mean 10 Model mean

LDEO + GLODAP 
(n=1,931)

12.2atm

r=0.89

SOCAT + GLODAP 
(n=41,820)

17.7atm

r=0.85

RMSE and correlation

Products Models

Feb    Apr   Jun    Aug    Oct    Dec             Feb    Apr   Jun    Aug    Oct    Dec 

McKinley et al. in prep
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N. Pacific STPS: Remove climatology

2000-2023 10 Product mean 10 Model mean

LDEO + GLODAP 
(n=1,931)

3.7atm

r=0.92

SOCAT + GLODAP 
(n=41,820)

7.2atm

r=0.89

RMSE and correlation

Product, Model, Datasets 

Trend = 2.1-2.2 uatm/yr

Products Models

McKinley et al. in prep
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N. Pacific STPS: Remove trend

2000-2023 10 Product mean 10 Model mean

LDEO + GLODAP 
(n=1,931)

3.7atm

r=0.40

SOCAT + GLODAP 
(n=41,820)

7.2atm

r=0.47

RMSE and correlation

Products Models

McKinley et al. in prep


