
OCEAN & SEA ICE BUDGETS IN ECCO Part 1: Overview & Applications

Helen Pillar (Helen.Pillar@utexas.edu)

University of Texas at Austin, Austin, TX

With thanks to:

Chris Piecuch

An Nguyen

What Drives the Steady and Time-Varying Ocean & Sea Ice States?

Seek explanations that are robust, quantitative & mechanistic

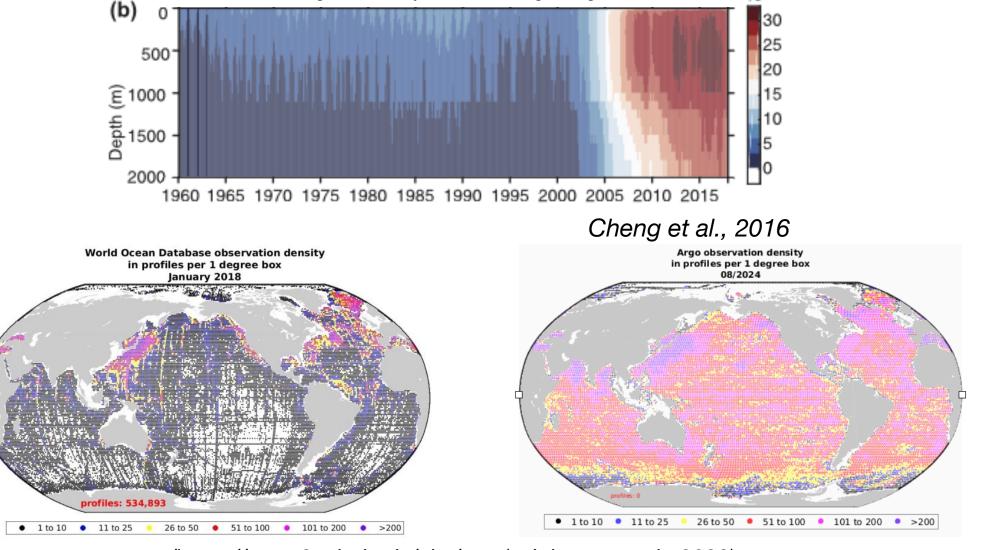
What are budgets are why are they useful?

Property evolution & conservation:

$$\frac{\partial \mathbf{v}}{\partial t} = -\mathbf{v} \cdot \nabla \mathbf{v} - f \hat{\mathbf{k}} \times \mathbf{v}_h - \frac{1}{\rho_c} \nabla_h p + \frac{1}{\rho_c} \mathcal{F}_v$$
$$\frac{\partial \theta}{\partial t} = -\mathbf{v} \cdot \nabla \theta + \frac{1}{\rho_c C_p} \mathcal{H}_{\theta}$$
$$\frac{\partial S}{\partial t} = -\mathbf{v} \cdot \nabla S + \frac{1}{\rho_c} \mathcal{Q}_S$$

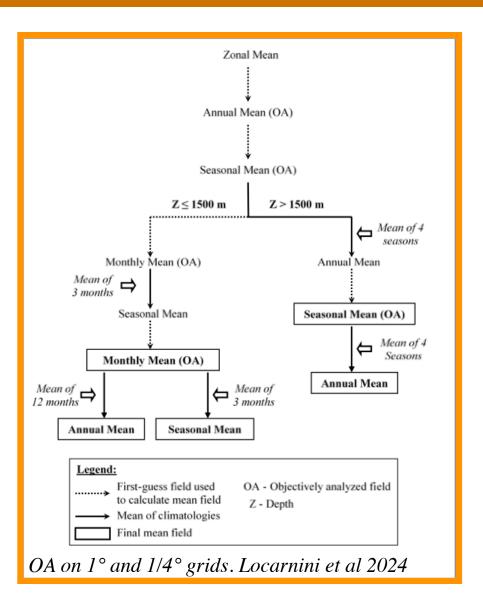
Obtaining a CLOSED budget:

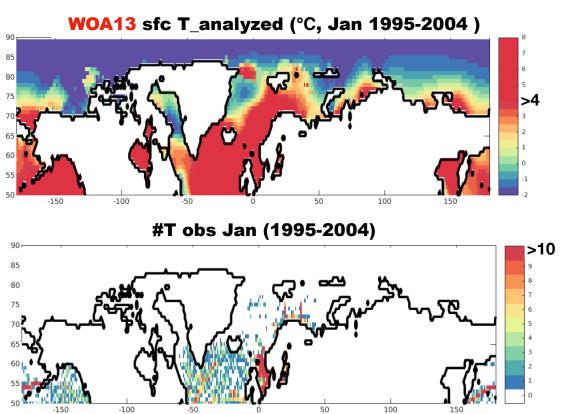
- tendency = sources + sinks + redistributions
- provides meaningful insights into drivers of change


How to assess budgets?

- Observations?
- Data products?
- Model-data syntheses?
 - Ocean reanalyses?
 - Ocean state estimates?

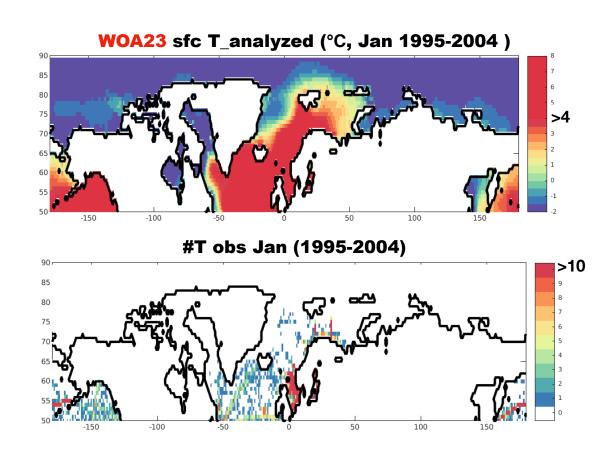
Observations & Data Products


Assessing Budgets: Challenges using observations

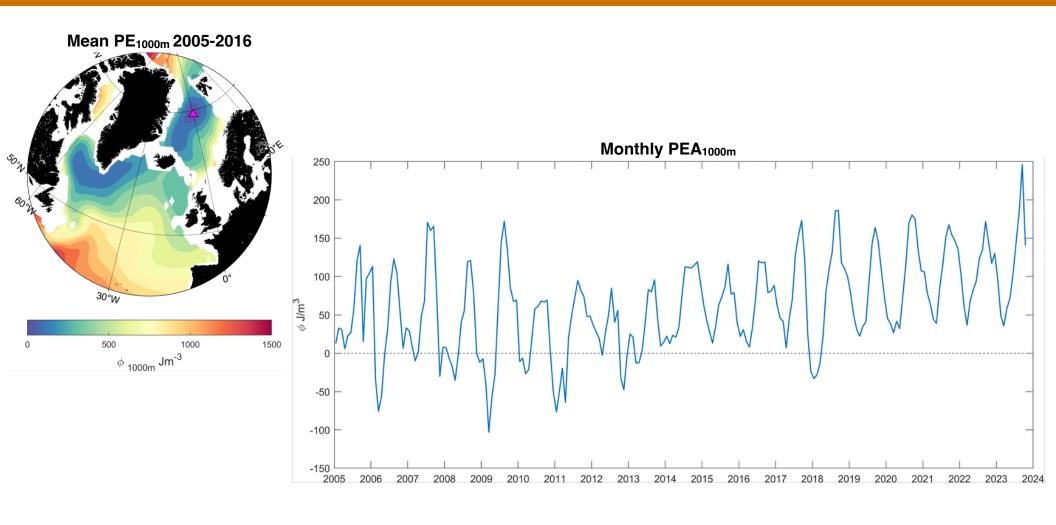

Fractional coverage of monthly S data, 1°x1° global grid

(https://www2.whoi.edu/site/argo), Johnson et al., 2022)

incomplete, sampled heterogeneously in space & time

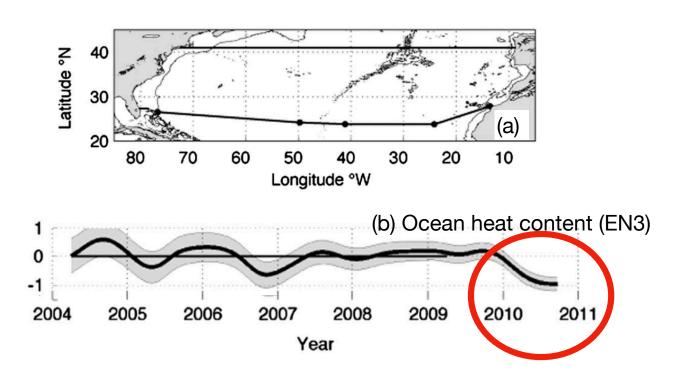


 Statistical gap-filling (e.g., objective analysis) is unreliable in data poor regions; Arctic analysis biased warm

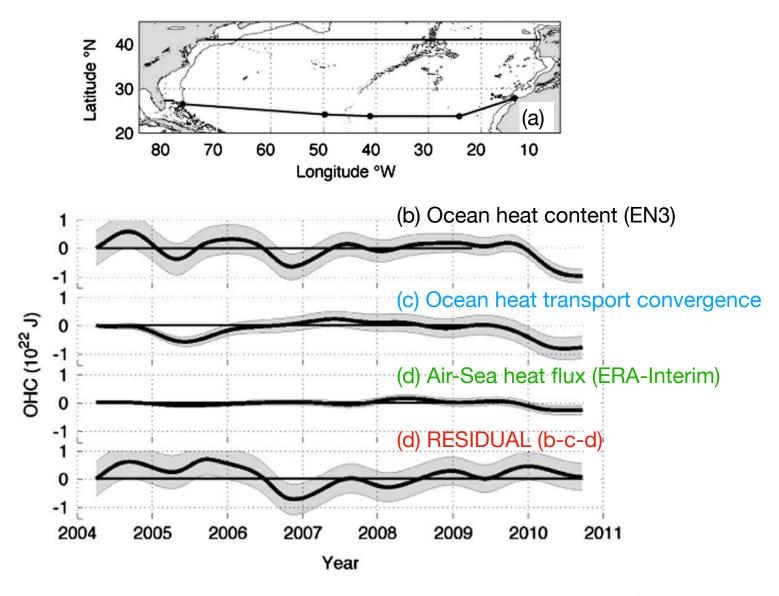

"We are still hampered in a number of ways by the lack of data...

Data may exist in one area for one season, thus precluding any representative annual analysis...

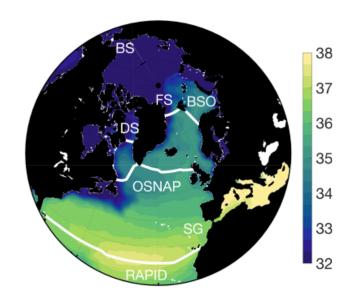
We provide the number of observation fields so data reliability can be assessed by the user"



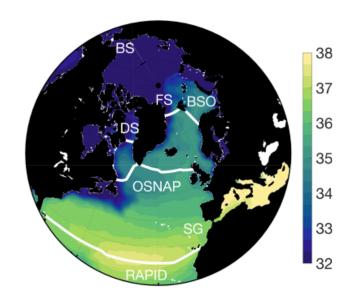
Locarnini et al., 2024



 ...and can introduce unphysical artifacts e.g., widespread sustained static instability in EN4 gridded product


Courtesy of Ben Lincoln, Bangor University

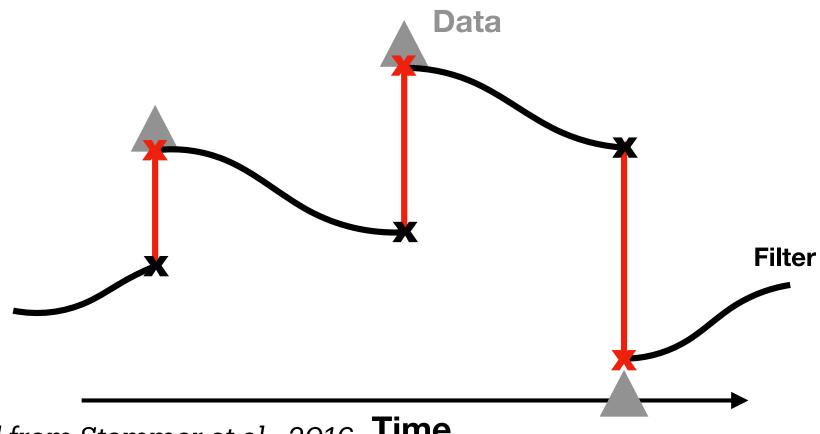
Cunningham et al., 2013: Exploring drivers of the subtropical Atlantic cold anomaly


Cunningham et al., 2013: Exploring drivers of the subtropical Atlantic cold anomaly

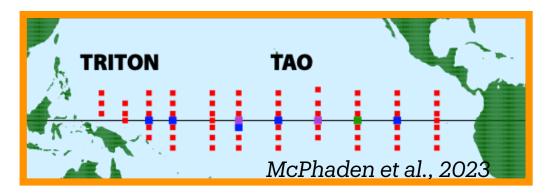
North Atlantic freshwater budget (Sv)

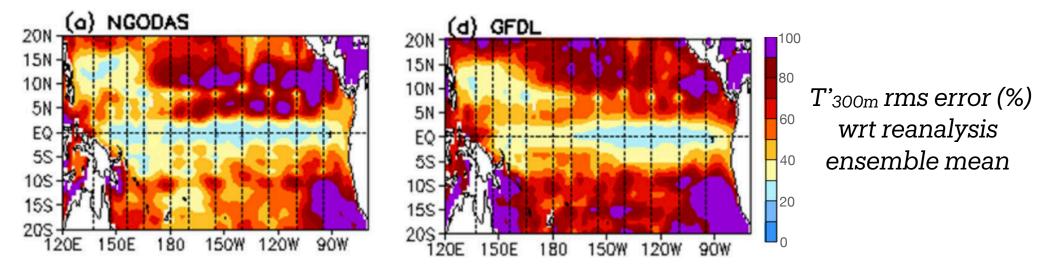
	OSNAP RAPID		Strait of Gibraltar	FW_{adv}	FWosc
8/2014-5/2018	-0.36 ± 0.05	0.42 ± 0.03	0.03 ± 0.01	0.09 ± 0.06	-0.15 ± 0.09
4/2004-8/2018	-0.36 ± 0.07	0.43 ± 0.02	_	$\textbf{0.10} \pm \textbf{0.07}$	-0.05 ± 0.02
	a	†	-		+ =

Li et al., 2021: Quantifying North Atlantic air-sea freshwater exchange

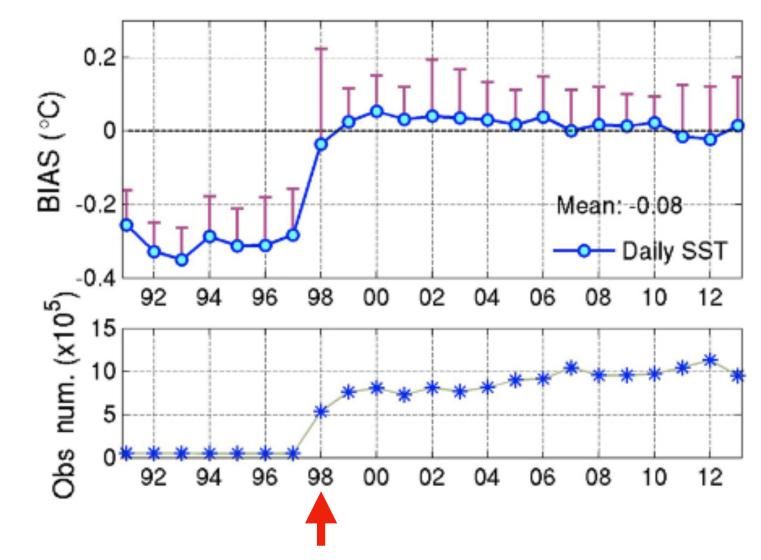

North Atlantic freshwater budget (Sv)

	OSNAP	RAPII	D	Strait of Gibraltar	FW_{adv}	FW _{OSC}	FW_{sfc}	Indeper	ndent reana	lyses
							Observation	NCEP CFSv2	JRA55	ERA5
8/2014-5/2018	-0.36 ±	0.05	0.42 ± 0.03	0.03 ± 0.01	0.09 ± 0.06	-0.15 ± 0.09	-0.06 ± 0.11	-0.11 ± 0.01	-0.19 ± 0.01	-0.14 ± 0.01
4/2004-8/2018	$-0.36\ \pm$	0.07	$\textbf{0.43} \pm \textbf{0.02}$	_	0.10 ± 0.07	-0.05 ± 0.02	$\textbf{0.05} \pm \textbf{0.07}$	-0.11 ± 0.01^{b}	$-0.19\; {\pm}0.005$	-0.15 ± 0.004
a + + = + = + = + = + = + = + = + = + =										

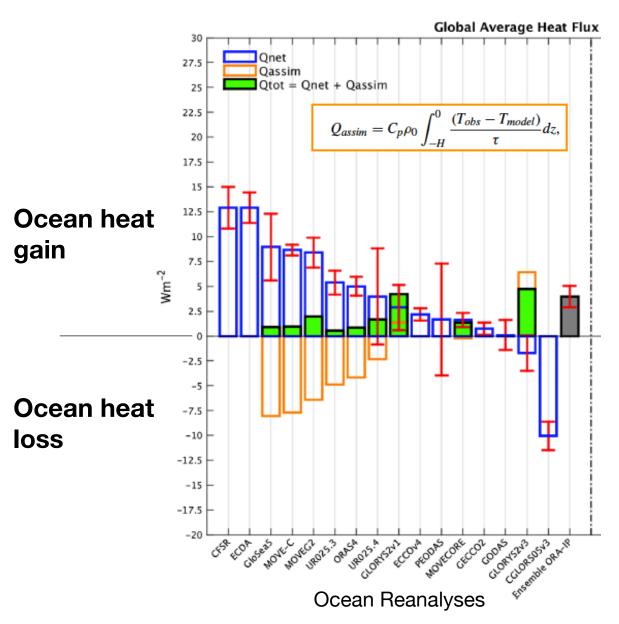

Li et al., 2021: Quantifying North Atlantic air-sea freshwater exchange


Reanalyses & State Estimates

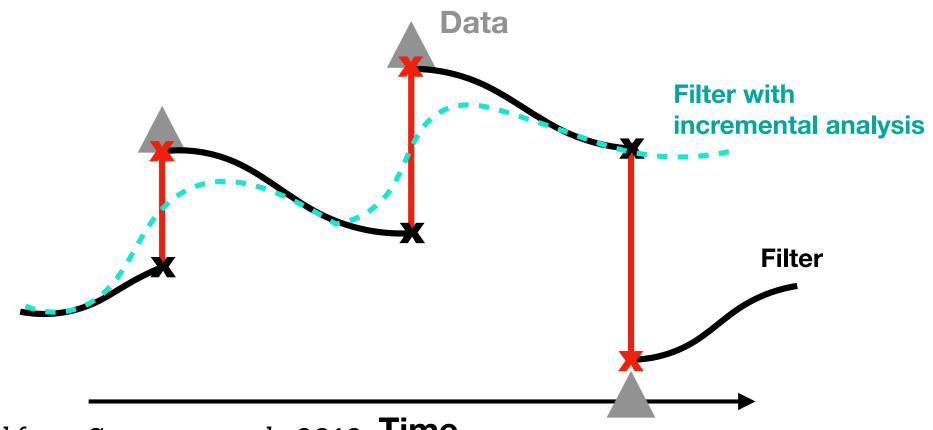
- Target = optimal forecast via IC adjustment
- Dynamical consistency/property conservation *NOT* enforced
- Analysis increments introduce spurious sources/sinks



Adapted from Stammer et al., 2016

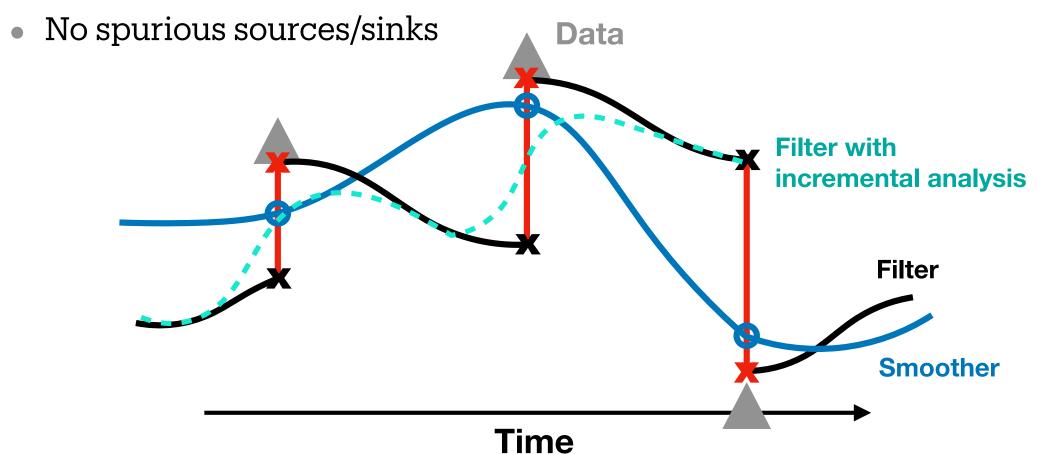


Xue et al 2017: Strong overfitting to local constraints and generation of spurious variability between moorings


Xie et al., 2017: Discontinuities in TOPAZ4 Arctic SST due to observing system changes

Most ocean reanalyses show spuriously large surface energy imbalance (1993-2009 mean) inconsistent with observed ocean warming (< 1 Wm⁻², Roemmich et al., 2015) leading to large unphysical heat removal by the analysis increments

Valdivieso et al., (2015), Balmaseda et al., (2015)

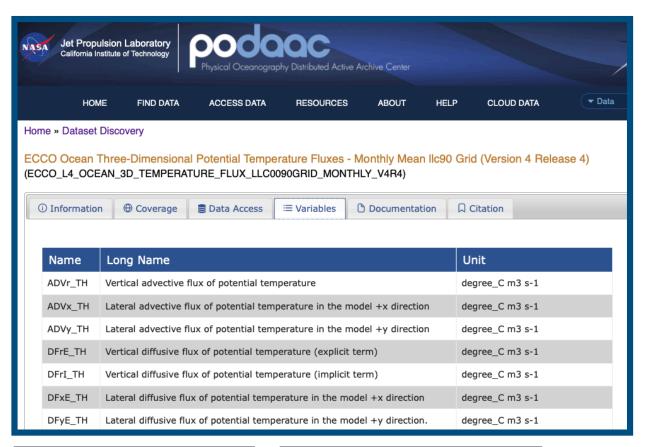

- Target = optimal forecast via IC adjustment
- Dynamical consistency/property conservation *NOT* enforced
- Analysis increments introduce spurious sources/sinks even when transformed to smoothed forcing

Adapted from Stammer et al., 2016

Assessing Budgets: Unique strengths of ECCO

- Target = optimal estimation of entire ocean state over full (multidecadal) period via control adjustment
- Dynamical consistency/property conservation *ENFORCED*

Adapted from Stammer et al., 2016



Most ocean reanalyses show spuriously large surface energy imbalance (1993-2009 mean) inconsistent with observed ocean warming (< 1 Wm⁻², Roemmich et al., 2015) leading to large unphysical heat removal by the analysis increments

Valdivieso et al., (2015), Balmaseda et al., (2015)

Complete global diagnostics + accompanying documentation

supports
accurate budget
assessment

+ ECCO community tutorials!

https://ecco-v4-python-tutorial.readthedocs.io

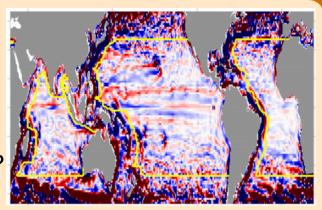
Detailed Budget Assessments in the ECCO Framework

- Momentum/vorticity e.g., Wunsch 2011, Thomas et al., 2014, Sonnewald et al., 2019, Le Bras et al., 2019, Trossman et al., 2024 ...
- Sea ice e.g., Bigdeli et al., 2019, Schulz et al., 2025
- **Heat content** e.g., Buckley et al., 2014, 2015, Tamsitt et al., 2016, Piecuch et al., 2017, Ponte & Piecuch 2018, Asbjørnsen et al., 2020, Tesdal & Haine 2020, Tesdal & Abernathy 2021 ...
- Salt/salinity/freshwater content e.g., Vinogradova & Ponte 2013, Gao et al, 2014, Ponte & Vinogradova 2017, Tesdal & Haine 2020, Verdy et al., 2023, Siddiqui et al., 2024 ...
- Sea level e.g., Piecuch & Ponte 2011, 2012, 2013, 2014 ...

• . . .

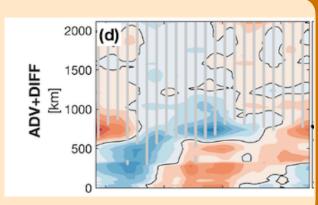
How to assess budgets?

ECCO state estimates

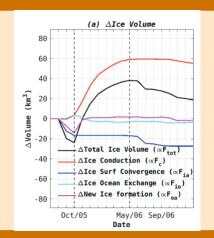


- Observationally constrained
- ✓ Dynamically consistent
- ✓ Complete global diagnostics available
- ✓ Documentation & detailed tutorials available
- ✓ A wealth of published applications available

Example Applications

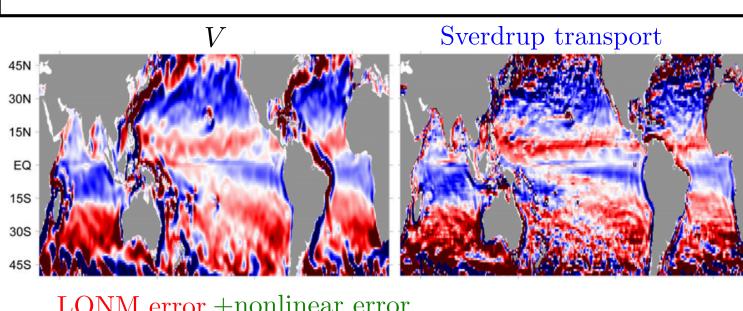

#1 Momentum/Vorticity

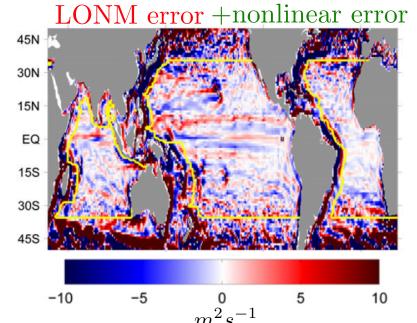
On what scales does
Sverdrup balance hold?


#2 Heat Content

What processes drive Arctic Amplification?

#3 Sea ice volume

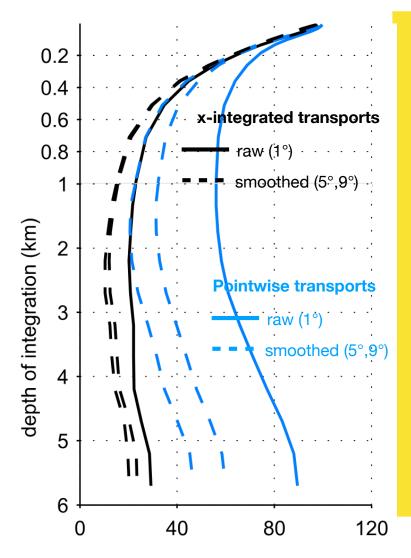

How can atmospheric warming drive sea ice growth?



#1 Testing scales of Sverdrup balance

$$V = (1/\rho_0 \beta) \hat{\mathbf{k}} \cdot \nabla \times \tau_{\mathbf{s}} - (f/\beta) w_h$$

$$+ (1/\beta) \hat{\mathbf{k}} \cdot \nabla \times \int_{-h}^{s} \nabla \cdot (A_H \nabla \mathbf{u}_H) dz - (1/\beta) \hat{\mathbf{k}} \cdot \nabla \times \int_{-h}^{s} (\mathbf{u} \cdot \nabla) \mathbf{u} dz$$



ECCOV4r3 1992-2007 mean; assume h=1400m

Thomas et al., 2014

error (%) = $100 x \frac{\text{LONM error} + \text{nonlinear error}}{\text{Sverdrup transport}}$

#1 Testing scales of Sverdrup balance

Summary:

Sverdrup balance holds (error < 30%) in subtropical interior only:

- (1) When integrating to mid-depth (below main thermocline, above deep transports)
- (2) At scales $> 5^{\circ}$

Thomas et al., 2014

Identifying dynamically distinct circulation regimes

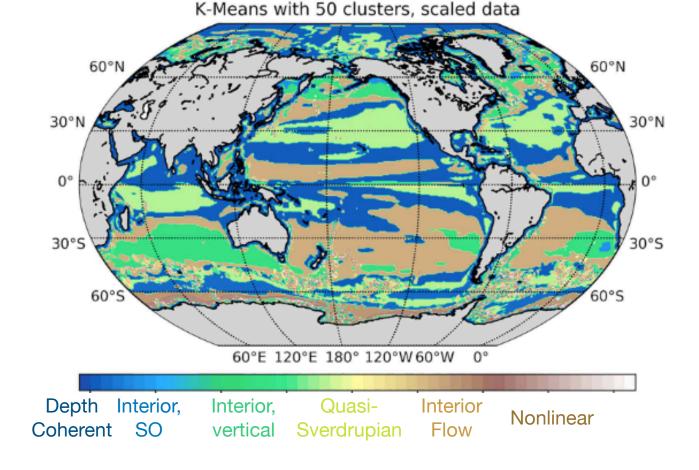
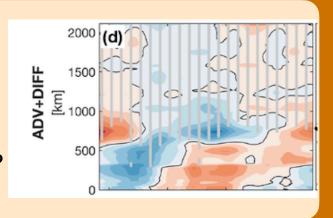
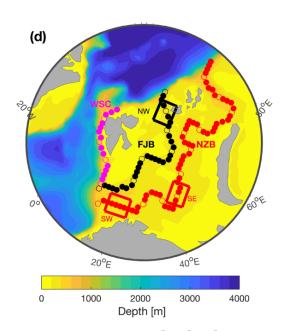


Table 1

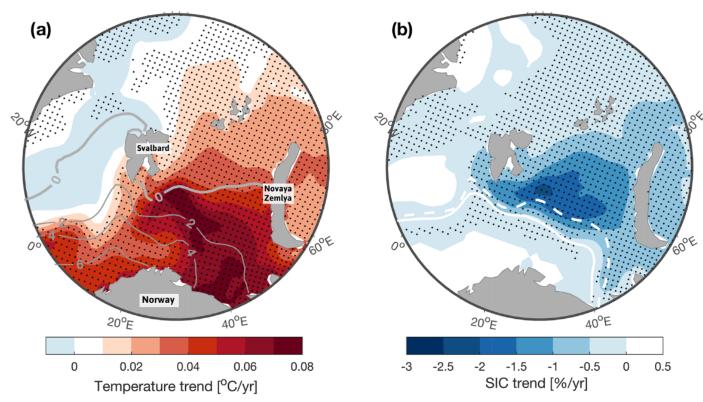
Percentage of Area Covered by the Area-Specific Balance of the BV Equation (3) and the Corresponding Map Figure

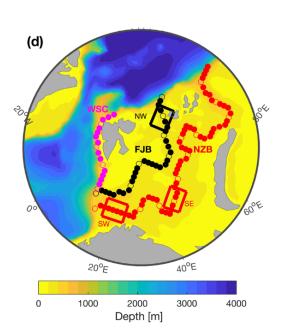

Cluster	Area	Leading terms
1	43 ± 3.3%, Depth coherent (Figure 3a)	$\nabla \times \tau_{sb} + \nabla \times \mathbf{A} \approx \nabla p_b \times \nabla H$ (Figure 3b)
2	24.8 ± 1.2%, Interior flow (Figure 3c)	$\nabla \times \tau_{sb} \approx \nabla p_b \times \nabla H + \nabla \cdot (f\mathbf{U})$ (Figure 3d)
3	14.6 ± 1%, Quasi-Sverdrupian (Figure 3e)	$\nabla \times \tau_{sb} \approx \nabla \cdot (\mathbf{fU})$ (Figure 3f)
4	6.9 ± 2.9%, Interior flow, vertical (Figure 4a)	$\nabla \times \tau_{sb} \approx \nabla \cdot (f\mathbf{U}) + \nabla p_b \times \nabla H \text{ (Figure 4b)}$
5	1.9 ± 1%, Interior flow, Southern Ocean (Figure 4c)	$\nabla \times \tau_{sb} \approx \nabla \cdot (f\mathbf{U}) + \nabla p_b \times \nabla H \text{ (Figure 4d)}$
6-50	$8.9\pm0.3\%$, Dominantly nonlinear (Figure 4e)	$\nabla \cdot (f\mathbf{U}) \approx \nabla \times \mathbf{A} + \nabla \times \tau_{\underline{sb}}$ (Figure 4f)

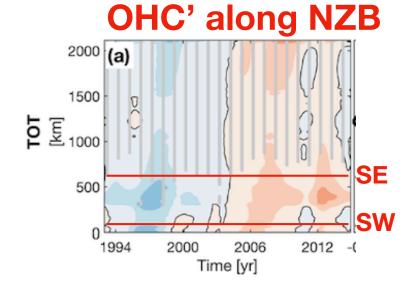

Note. Leading order terms are sorted by magnitude, colors indicating if barotropic vorticity is added (red in font) or removed (blue in font) by the leading order term, the corresponding bar chart figure shows the full breakdown. The quoted percentage coverage and StD is the mean of 100 runs of the algorithm.

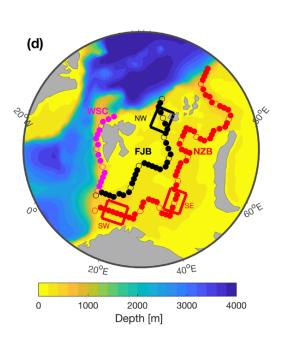
Example Applications

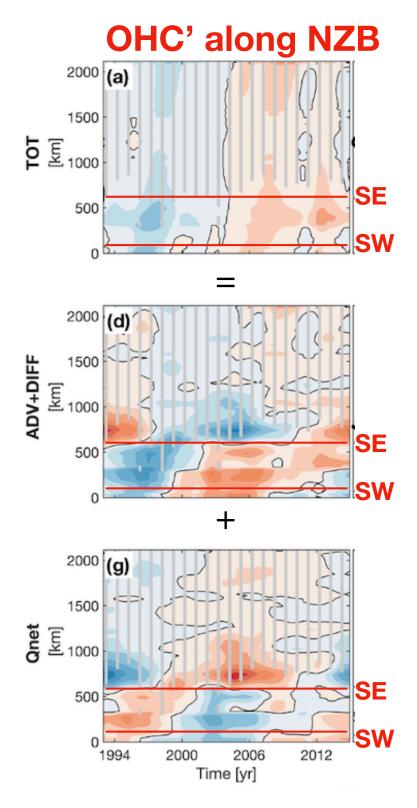
#2 Heat Content

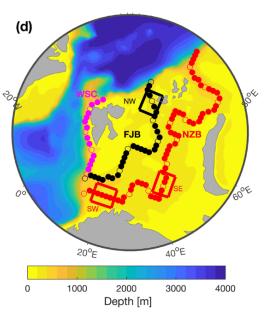

What processes drive Arctic Amplification?

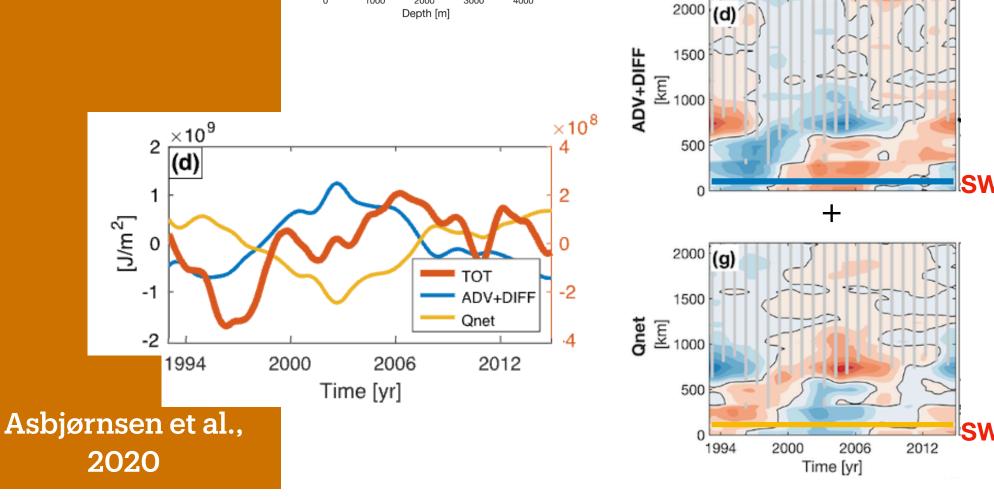


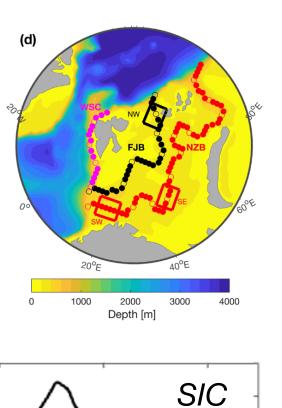


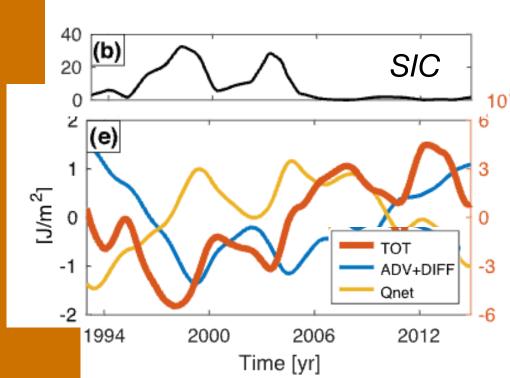

Mean AW pathways through the Barents Sea

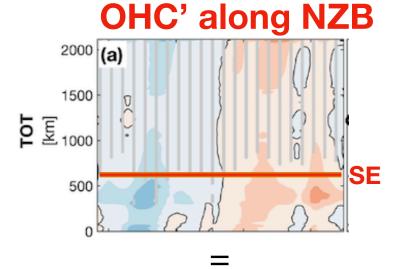

ECCOV4r3 trends 1993-2014

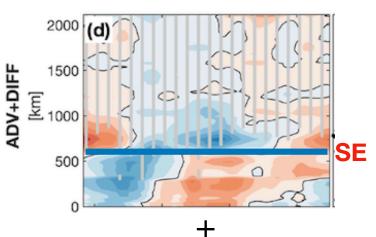


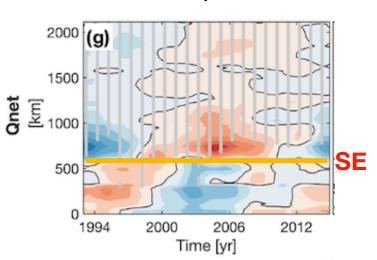

OHC' along NZB

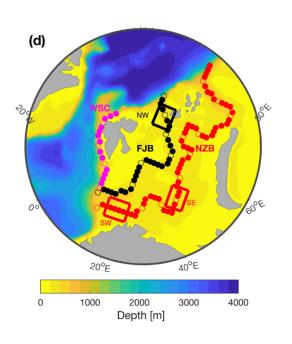

²⁰⁰⁰ (a)


1500


500


1000

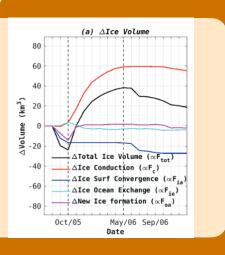


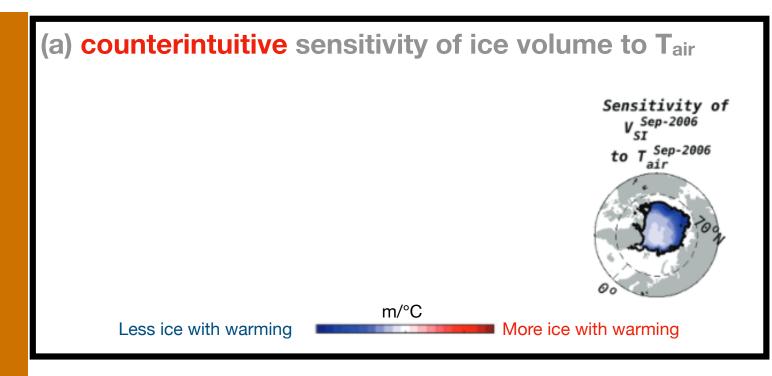


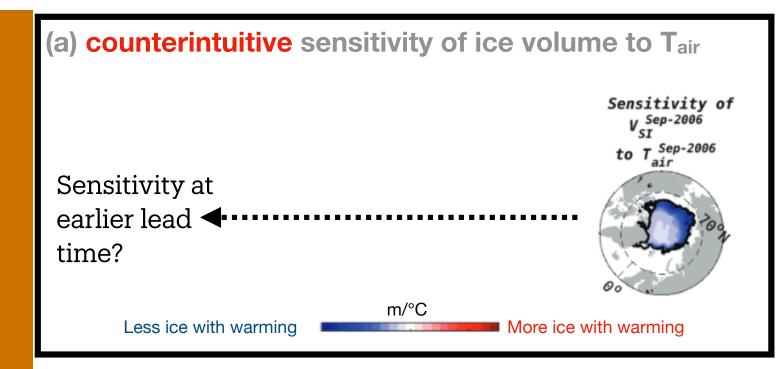
#2
Exploring
mechanisms
of Arctic
Amplification

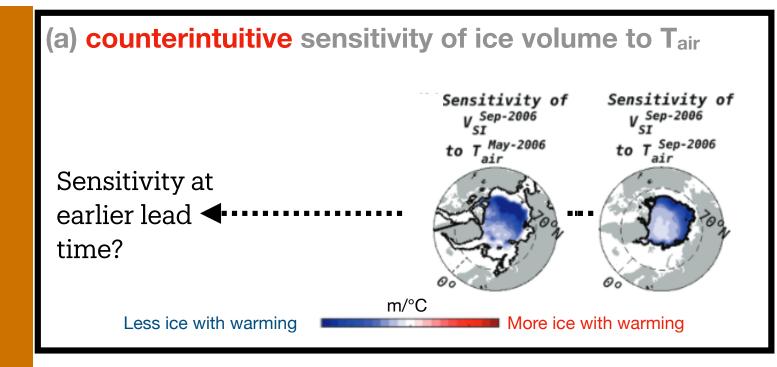
Summary: Ongoing Atlantification is complex! Underlying mechanisms vary in space and time

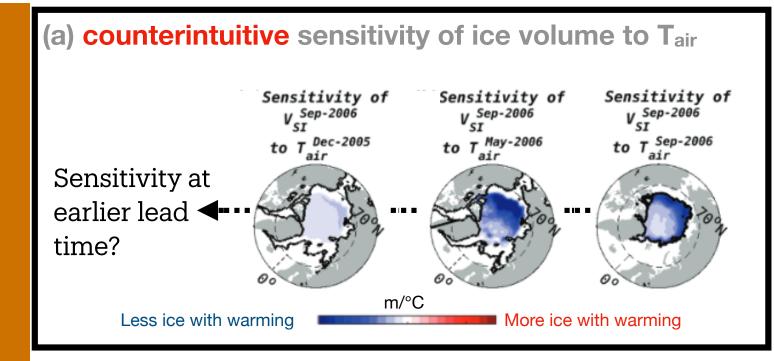
²⁰⁰⁰ (a) 1500 **五**型 1000 SE 500 2000 1500 ADV+DIFF 토 1000 SE 500 ²⁰⁰⁰ (g) 1500 2000 Fig. 1000 SE 500 2012 2000 2006 1994 Time [yr]

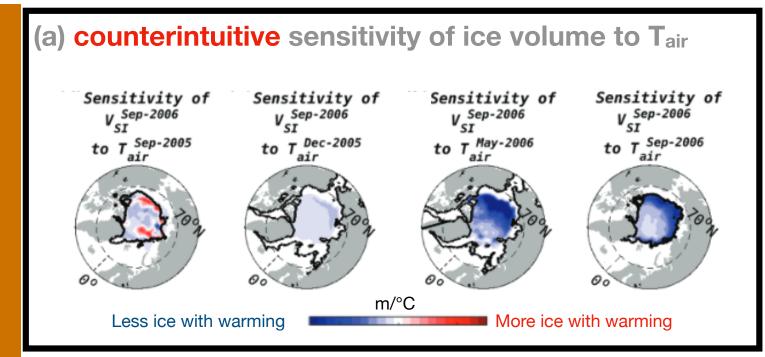

OHC' along NZB

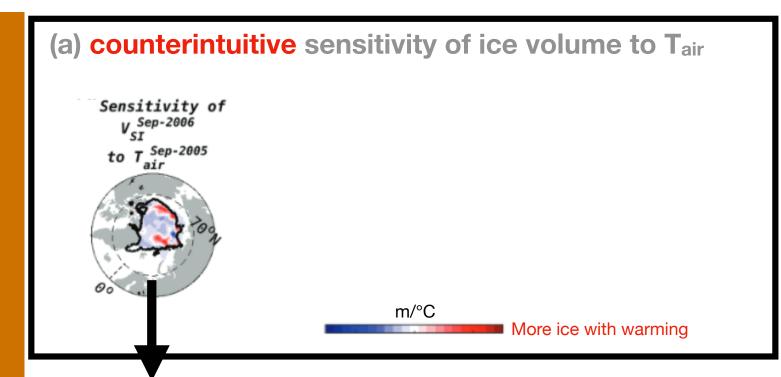

Asbjørnsen et al., 2020

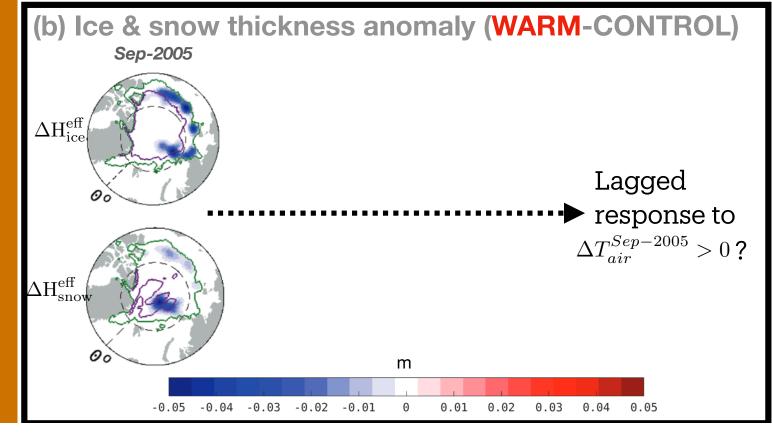

Example Applications

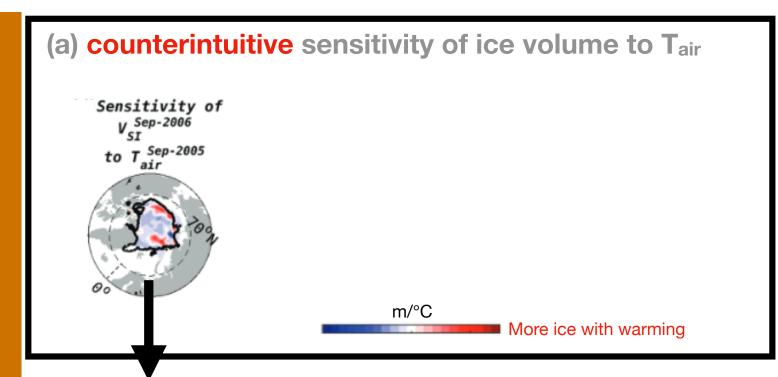

#3 Sea ice volume

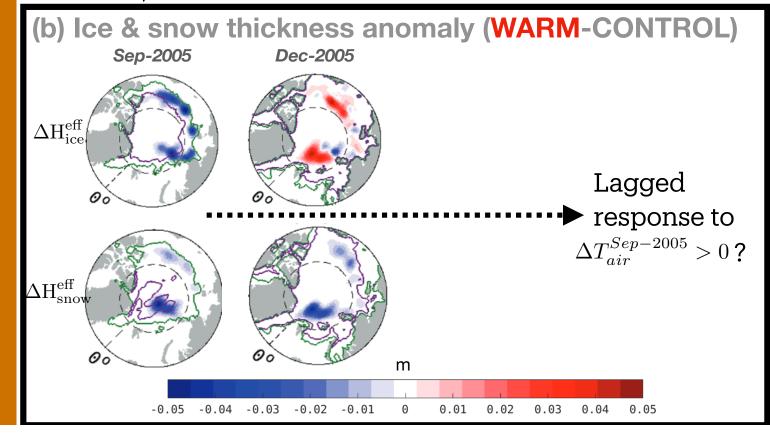

How can atmospheric warming drive sea ice growth?

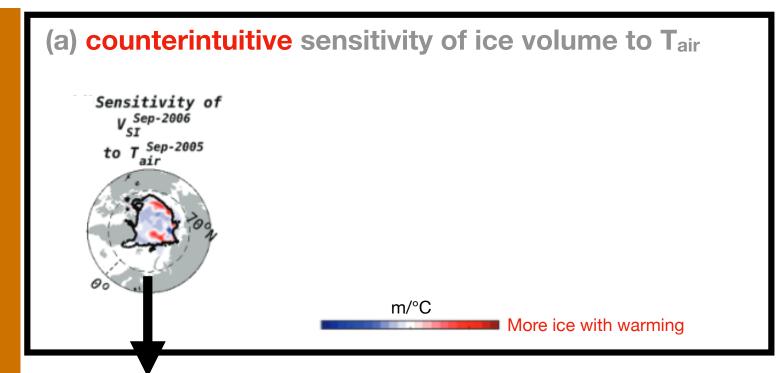


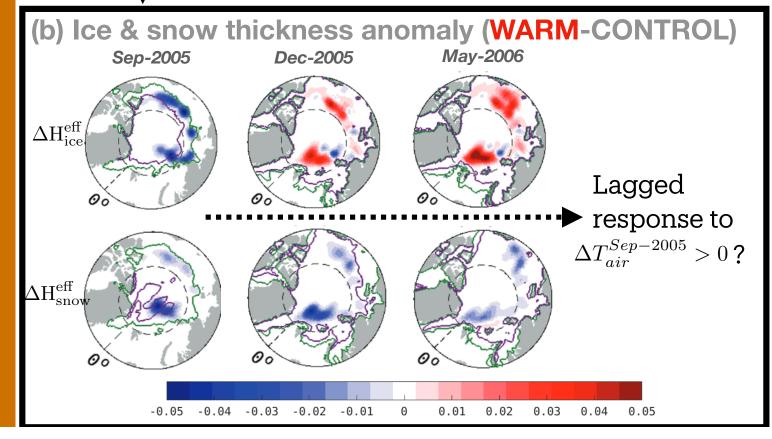


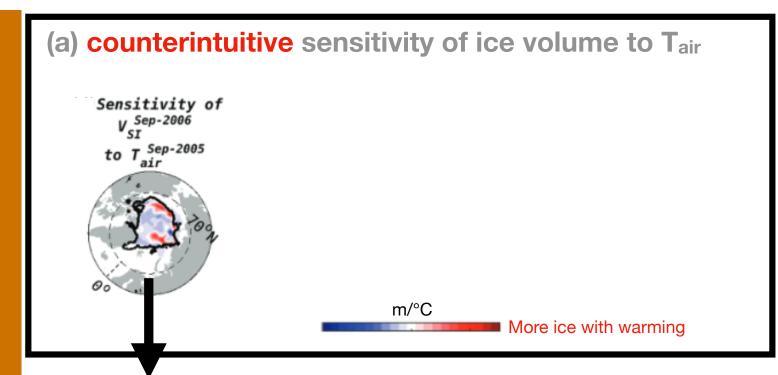


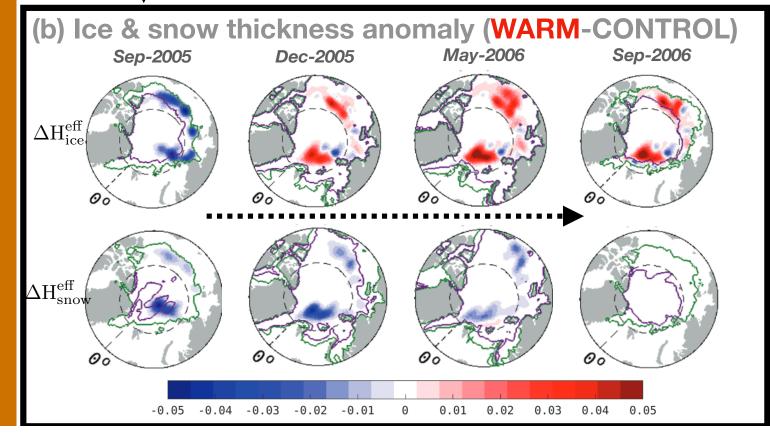


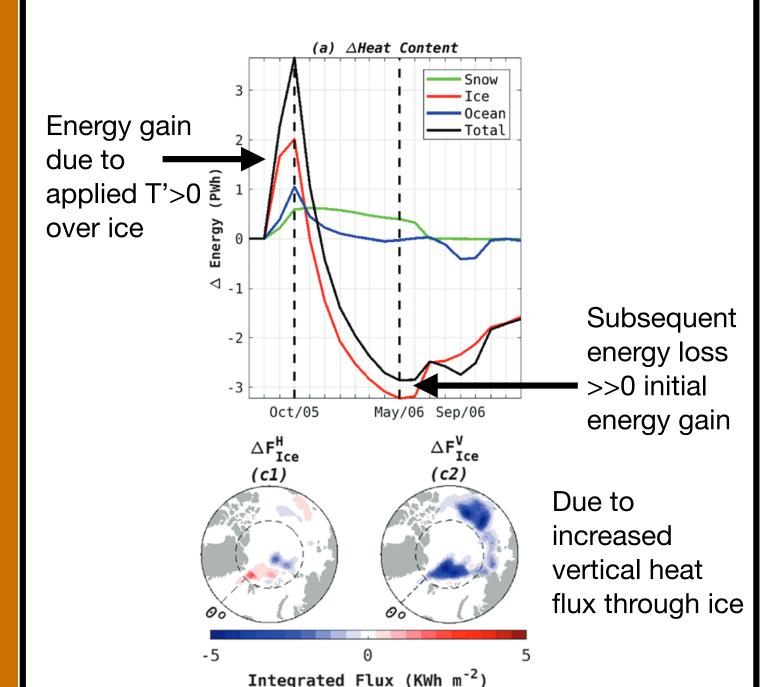


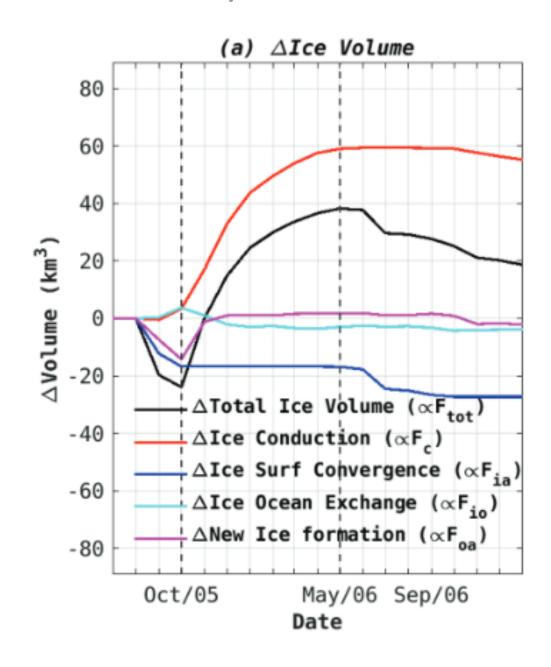


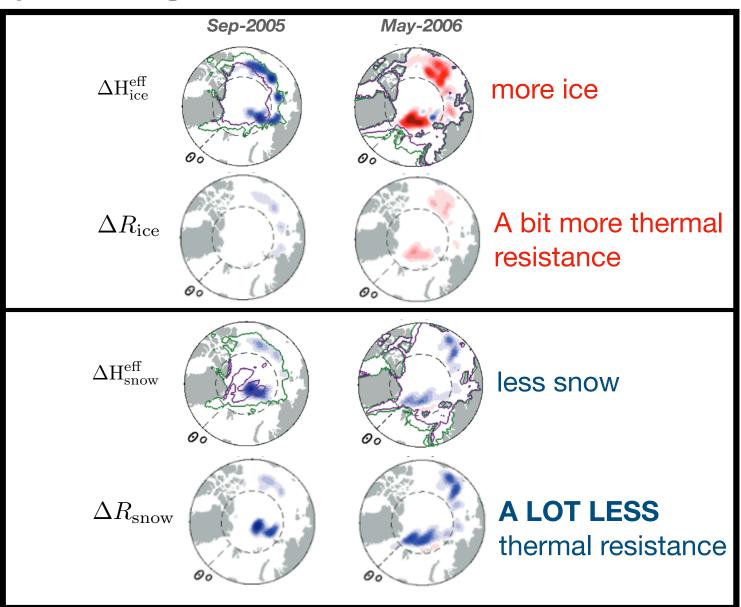






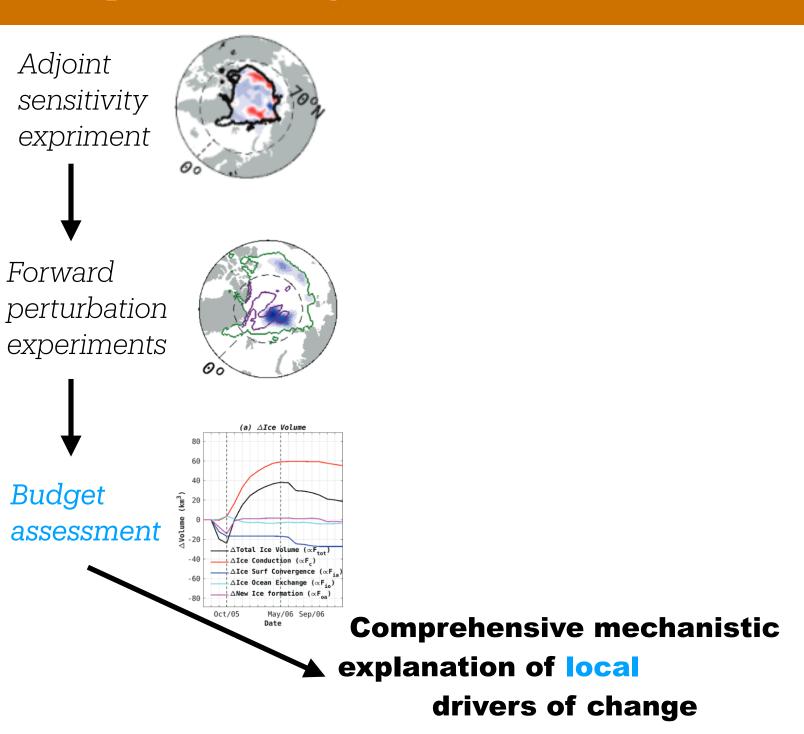




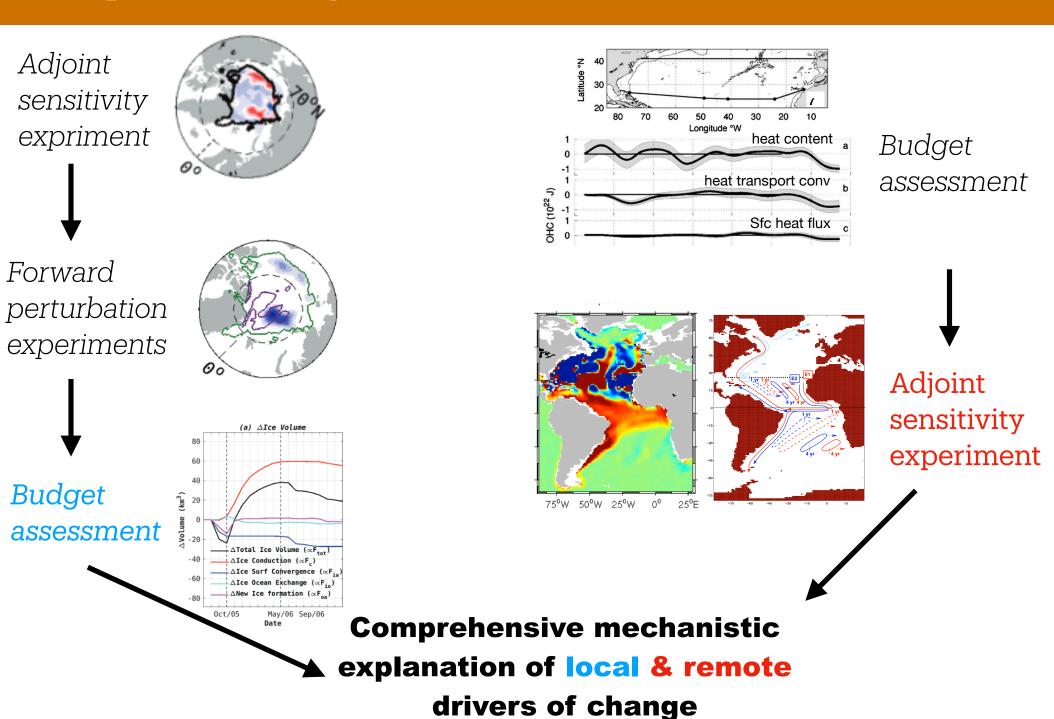

(c) System energy budget (WARM-CONTROL)

(d) Sea ice heat (equivalent ice volume) budget (WARM-CONTROL)

(d) Δ thermal resistance (WARM-CONTROL) during period of significant sea ice loss in WARM


Snow resistance ~ 7 x ice resistance!

~35cm ice growth balances 5cm snow loss


Summary:

- Atmospheric warming can drive lagged sea ice growth via a snow-melt-conductivity feedback:
 - Atmospheric warming melts snow (+ ice)
 - Loss of snow layer —> reduced thermal buffering —> increased conductive heat loss —> ice growth
 - Increased thermal buffering from ice growth
 << reduced thermal buffering from snow loss
 -> ice growth continues; +ve anomaly still detectable at end of melt season
 - TIMING: snow melt most impactful at end of melt season; preconditions ice growth through winter

Complementarity of tools in ECCO

Complementarity of tools in ECCO

SUMMARY

- Budgets analyses can provide a quantitative and mechanistic understanding ocean change
- Key advantages of ECCO include the ability to:
 - (1) perform *meaningful* budget analyses in a data-constrained framework
 - (2) link local changes to local & remote drivers (via budgets + adjoint sensitivities)
- Available ECCO diagnostics, documentation & tutorials can support your future analyses!

Thank You!

OCEAN BUDGETS IN ECCO Part 2: Implementation

- Momentum
- Heat
- + hands on tutorial

Volume Budget Closure: See Ian & Andrew's tutorial in [ecco-2025] Jupyter book

ECCOv4 Global Volume Budget Closure

Here we demonstrate the closure of volume budgets in ECCOv4 configurations. This notebook is draws heavily from [evaluating_budgets_in_eccov4r3.pdf| which explains the procedure with Matlab code examples by Christopher G. Piecuch. See ECCO Version 4 release documents: /doc/evaluating budgets in eccov4r3.pdf).

Objectives

Illustrate how volume budgets are closed globally.

Introduction

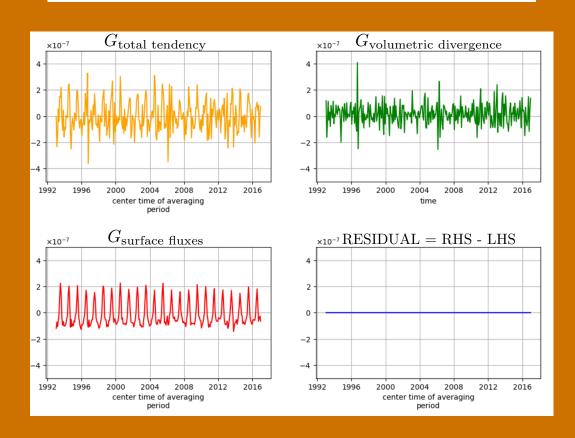
ECCOv4 uses the z^{*} coordinate system in which the depth of the vertical coordinate, z^{*} varies with time as:

$$z^* = rac{z-\eta(x,y,t)}{H(x,y)+\eta(x,y,t)}H(x,y)$$

With H being the model depth, η being the model sea level anomaly, and z being depth

If the vertical coordinate didn't change through time then volume fluxes across the 'u' and 'v' grid cell faces of a tracer cell could be calculated by multiplying the velocities at the face with the face area:

volume flux across 'u' face in the +x direction = $UVEL(x, y, k) \times drF(k) \times dyG(x, y) \times hFacW(x, y, k)$


volume flux across 'v' face in the +y direction = $VVEL(x,y,k) \times dr F(k) \times dx G(x,y) \times hFacS(x,y,k)$

With dyG and dxG being the lengths of the 'u' and 'v' faces, drF being the grid cell height and hFacW and hFacS being the vertical fractions of the 'u' and 'v' grid cell faces that are open water (ECCOv4 uses partial cells to better represent bathymetry which can allows 0 < hfac < 1).

However, because the vertical coordiate varies with time in the z^* system, the grid cell height drF varies with time as $drF \times s^*(t)$, with

$$s^*(x,y,k,t) = 1 + rac{\eta(x,y,t)}{H}$$

$$\underbrace{\frac{\partial \eta}{\partial t}}_{G_{\text{total tendency}}} = \underbrace{\int_{-H}^{0} \left(-\nabla_{z^*} (s^* \, \mathbf{v} - \frac{\partial w}{\partial z^*} \right) dz^* + \underbrace{F}_{G_{surfacefluxes}} \right)}_{G_{\text{volumetric divergence}}}$$

Salt/Salinity Budget Closure: See tutorial at https://ecco-v4-python-tutorial.readthedocs.io

$$\underbrace{\frac{\partial S}{\partial t}}_{G_{\text{total}}^{Sln}} = \underbrace{\frac{1}{s^*} \left[S \left(\nabla_{z^*} \cdot (s^* \mathbf{v}) + \frac{\partial w}{\partial z^*} \right) - \nabla_{z^*} \cdot (s^* S \mathbf{v}_{res}) - \frac{\partial (S w_{res})}{\partial z^*} \right]}_{G_{\text{advection}}^{Sln}} \underbrace{-\nabla \cdot \mathbf{F}_{\text{diff}}^S + \underbrace{F_{\text{forc}}^S - S \mathcal{F}}_{G_{\text{forcing}}^{Sln}}}_{G_{\text{forcing}}^{Sln}}$$

ECCO native grid

NTRO TO PO TUTORIAL

Intro to PO Tutorials: Getting Started

Part 1: Geostrophic balance

Part 2: Thermal Wind

Part 3: Steric height

MORE ADVANCED CALCULATION

Compute meridional heat transport Compute MOC along the approximate

ECCOv4 Global Volume Budget Closure

Global Heat Budget Closure

☐ Salt, Salinity and Freshwater Budgets

Objectives

Introductio

■ Prepare environment and load

ECCOv4 diagnostic output

Evaluating the salt budget

⊕ Evaluating the salinity budget

Evaluating the freshwater budget

Save budget terms

Load budget variables from file

□ Comparison between LHS and RHS of the budget equation

Calculate ocean thermal forcing from ECCOv4r4 data, direct from PO.DAAC S3 storage

SUPPOR'

Getting Help

Docs » Salt, Salinity and Freshwater Budgets

View page source

Salt, Salinity and Freshwater Budgets

Contributors: Jan-Erik Tesdal, Ryan Abernathey, Ian Fenty, Emma Boland, and Andrew Delman.

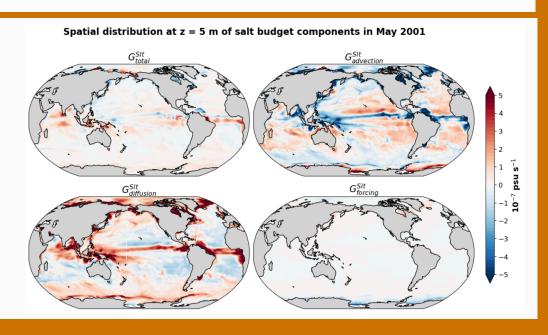
Updated 2024-10-17

A major part of this tutorial is based on "A Note on Practical Evaluation of Budgets in ECCO Version 4 Release 3" by Christopher G. Piecuch (https://dspace.mit.edu/handle/1721.1/111094?show=full). Calculation steps and Python code presented here are converted from the MATLAB code presented in the above reference.

Objectives

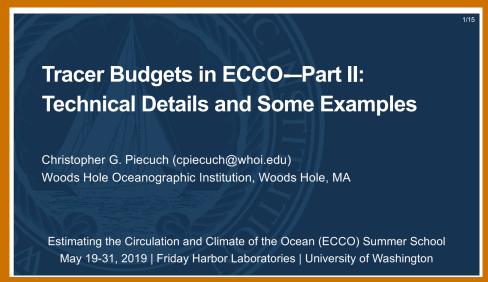
This tutorial will go over three main budgets which are all related:

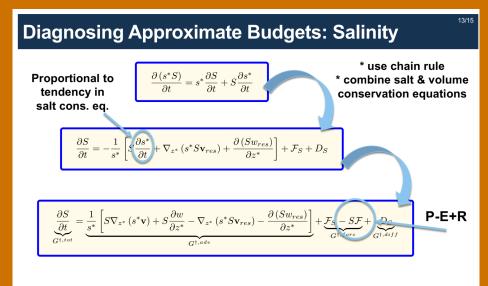
- 1. Salt budget
- 2. Salinity budget
- 3. Freshwater budget


We will describe the governing equations for the conservation for both salt, salinity and freshwater content and discuss the subtle differences one needs to be aware of when closing budgets of salt and freshwater content (extensive quantities) versus the budget of salinity (an intensive quantity) in FCCOV4

Introduction

The general form for the salt/salinity budget can be formulated in the same way as with the heat budget, where instead of potential temperature (θ) , the budget is described with salinity (S).


$$\frac{\partial S}{\partial t} = -\nabla \cdot (S\mathbf{u}) - \nabla \cdot \mathbf{F}_{diff}^S + F_{forc}^S$$

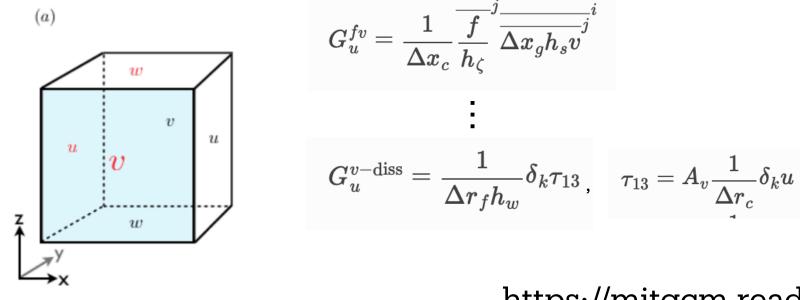

$$\underbrace{\frac{\partial(s^*S)}{\partial t}}_{G^{Slt}_{\text{total}}} = \underbrace{-\nabla_{z^*} \cdot (s^*S \, \mathbf{v}_{res}) - \frac{\partial(S \, w_{res})}{\partial z^*}}_{G^{Slt}_{\text{advection}}} \underbrace{-s^*(\nabla \cdot \mathbf{F}^S_{\text{diff}})}_{G^{Slt}_{\text{diffusion}}} + \underbrace{s^*F^S_{\text{forc}}}_{G^{Slt}_{\text{forcing}}}$$

And Chris Piecuch's documentation & talk from ECCO 2019 Summer School

https://www.eccosummerschool.org/schedule-1

- These notes are for official ECCOV4r4 & 5
- Use diagnostics output on the native grid

ECCO Momentum Budgets


MITgcm Momentum Budget: equations

From JMC yesterday, vector invariant momentum eq:

$$\frac{\partial \mathbf{v}_h}{\partial t} = -(f + \zeta)\hat{\mathbf{k}} \times \mathbf{v}_h - \nabla \mathbf{KE} - w\frac{\partial \mathbf{v}_h}{\partial z} - g\nabla \eta - \frac{1}{\rho_c}\nabla_h p' + \nabla \cdot (\nu \nabla \mathbf{v}_h) + \frac{1}{\rho_c}\mathcal{F}_{\mathbf{v}}$$

Discretized u-mom:

$$G_u = G_u^{fv} + G_u^{\zeta_3 v} + G_u^{\zeta_2 w} + G_u^{\partial_x B} + G_u^{\partial_z au^x} + G_u^{h-\mathrm{diss}} + G_u^{v-\mathrm{diss}}$$

$$G_u^{fv} = rac{1}{\Delta x_c} \overline{rac{f}{h_\zeta}}^j \overline{\Delta x_g h_s v}^j$$

$$G_u^{v- ext{diss}} = rac{1}{\Delta r_f h_w} \delta_k au_{13}$$
 ,

$$au_{13} = A_v rac{1}{\Delta r_c} \delta_k u$$

https://mitgcm.readthedocs.io

MITgcm Momentum Budget: annotated call tree

```
forward_step
---dynamics
          CALL WRAPPER FOR MOMENTUM TENDENCY CALCULATIONS
          - - - mom_vecinv if not using fluxform, call wrapper to compute tendencies in vector invariant eq.,
                                 output = [guDissip,gvDissip] and net advective (inc. Coriolis) tendency [gU,gV] (via common block DYNVARS.h)
                    - - - mom_calc_ke KE at tracer point, needed for advective tendency, output=KE
                    | \textbf{---mom\_calc\_relvort3} \ \hat{\textbf{\textit{k}}} \cdot (\nabla \times \textbf{\textit{u}}), \text{ needed for Leith eddy viscosity, output=vort3}, \text{ without dynamic BC applied for Leith eddy viscosity}.
                    - - - mom_calc_hdiv (\nabla_h \cdot \mathbf{u}), needed for Leith eddy viscosity, output=hDiv
                    BEFORE COMPUTING DISSIPATION, UPDATE BACKGROUND VISCOSITY TO INCLUDE EDDY VISCOSITY BASED ON LOCAL FLOW STRUCTURE
                    IF (useVariableVisc) THEN tension & strain also computed here but only relevant if using Smagorinsky closure
                                                                (not in ASTE B1)
                    |---mom_calc_visc add to preset viscosity an eddy viscosity based on gradient of vorticity and divergence (Leith)
                                                   If Smagorinsky is used, eddy viscosity is based on strain and tension instead
                                                   output = updated harmonic and biharmonic coeffs. at corner and centre points. See MITgcm manual section 2.21.1
                    ENDIF
                    IF (useBiharmonicVisc)
                    --- mom_calc_del2uv Harmonic parts (i.e., D, \zeta terms, not D^*, \zeta^* terms) of Eq. (12) output=[del2u,del2v] (NB: \neq \nabla^2 \mathbf{u})
                    - - mom_calc_hdiv 2nd call computes ∇ · [Eq. (12) without the D*, ζ* terms]. Gives ∇ · (∇² u), output=dStar (Eq. (14))
                    |--- mom_calc_relvort3 2nd call computes \hat{k} \cdot (\nabla \times [Eq. (12)]) without the D^*, \zeta^* terms]). Gives \nabla^2 \zeta_3, output=zStar (Eq. (15))
                    If (.NOT. useStrainTensionVisc) THEN using vorticity and divergence formulation
                    |--- mom_vi_hdissip compute harmonic and biharmonic dissip, tendency as given by Eq. (12), from D, ζ, D*, ζ*
                                                      output = updated dissip. tendencies [guDiss,gvDiss], but still missing side and bottom drag
                                                      We have added a call to store the laplacian and biharmonic contributions separately
                             CALL DIAGNOSTICS_FILL( uDiss_lap, 'Um_Diss2',k,1,2,bi,bj,myThid)
                             CALL DIAGNOSTICS_FILL( vDiss_lap, 'Vm_Diss2', k, 1, 2, bi, bj, myThid)
                             CALL DIAGNOSTICS_FILL( uDiss_bih, 'Um_Diss4', k, 1, 2, bi, bj, myThid)
                             |CALL DIAGNOSTICS_FILL( vDiss_bih, 'Vm_Diss4', k, 1, 2, bi, bj, myThid)
                     ENDIF
                     If (no_slip_sides) THEN
                    - - - mom_u_sidedrag u-mom tendency from no slip condition on viscous stress. Output = body force vF
                             |CALL DIAGNOSTICS_FILL( uDragTerms, 'USidDrag', k, 1, 2, bi, bj, myThid)
                      Do j=jMin, jMax update u-mom diss. tendency after exiting side drag S/R
```

Do i=iMin.iMax

ECCOV4r5

Momentum Budget Evaluation in ASTE Release 1 Part I: Full momentum budget

Helen Pillar *1. An T. Nguyen1. Jean-Michel Campin2 and Patrick Heimbach ¹Oden Institute for Computational Engineering and Sciences, UT Austin, TX ²Department of Earth, Atmospheric and Planetary Sciences, MIT, MA

lune 14 2021

1 Introduction

The purpose of their rotes in to describ layer to profrom accurate monominum budget early-ses usingly assign them better release of the Accide and Suppose or fails Estimate (Section 1997). The Sparin of the Section 1997 of th

ASTE.R1 has been produced using the non-linear inverse modeling framework developed within the conscription by Estimating the Circulation and Climate of the Ocean (ECCO, Stammer et al. 2002). Warnish and Hemberds 2007, Forger et al. 2013, Hemberd et al. 2019, the inversion consists of an Ineative, gradient-beased minimization of a least-squares model-data mist Control of the Con assimilation, for which analysis increments can introduce spurious sources and sinks of basic properties [Wunsch and Heimbach 2007, Stammer et al. 2016].

los states for the period 2002-2017. The nominal horizontal resolution in ASTE, based on LLC-270 grid [Forget et al. 2015], is 14 km in the Arctic. A full description of ASTER In product and assessment of the solution – including extensive comparison to available observations presented by Nguyen et al. [2021b]. Additional user notes, including information on data disti-tion and post-processing tools, are given in Nguyen et al. [2021a]. The reader is also referred

Momentum Budget Evaluation: update for ASTE & ECCOv4 extensions

¹Orien Institute for Computational Engineering and Sciences, LIT Austin, TX

January 25, 2022

1 Introduction

We provided notice on classing the momentum budget and assessing contributions from different forcego to accompany Release of of the Actic Support grays that Estimate (ACTE FII), configured in MT/gram chappoint (etc.). This recognise also holds for ESCOM4. ASTE and ESCOM4 are currently undergoing further development, including an upgrade of the code base to a newer MT/gram chepopine (five for ACTE, cdd 60 of ESCOM4), accomplising correction of our method for which the ACTE, cdd 60 of ESCOM4 is, documentally correction of our method for which are active to the ACTE, cdd 60 of ESCOM4 is, documentally correction of our method for which additional sources may contribute for different CPP options to help leage the budget closed in the fluid.

2 Code changes relevant for momentum budget evaluation

(1) Pressure Gradient Force: Jean-Michel introduced a new diagnostic (U.V)n Phi (X.Y) con (1) Pressure Gradient Force: Jean-Incident inducation a new dispipaciosic (U, YI IL PULLY, I) con-taining the tendency from the full pressure gradient force. Originally, we combined the self-ing diagnostic for the hydrostatic pressure gradient & explicitly-computed surface pressure gradient (U, VI Jul Andred X, YI) offfice. Now (U, YI Jul Andred X, YI) has been retired and (U, YI Jul Andred X, YI) and for the control of the decidency of any part self-original force of the decidency of any past self-original force of the decidency of any past self-original force of the decidency of any busine (U, VI Jul Andred X, YI) and self-original force of the decidency of any busine (U, VI Jul Andred X, YI) and the decidency of any busine (U, VI Jul Andred X, YI) and the decidency of any busine (U, VI Jul Andred X, YI) and the decidency of any busine (U, VI Jul Andred X, YI) and the decidency of any busine (U, VI Jul Andred X, YI) and the decidency of any business of the decidency of any business of the decidency of any business of the decidency of the de part of the code to close the momentum budget offline. Note that if you run non-hydrostatic MIT-gem, the non-hydrostatic PGF is also contained within the new diagnostic (U, V) = Ph I (X, Y). Below in green we give a summary of code updates (not writing out all DO loops etc. this time)

MITgcm Momentum Budget: diagnostic output

Diagnostic	Description (units)	Units	Location	Dims
TOT[U,V]TEND	[u,v] total Eulerian tendency	ms-1day-1	[u,v]	[nx,ny,nz]
[U,V]m_Advec	[u,v] tendency from inertia + Coriolis	ms-2	[u,v]	[nx,ny,nz]
[U,V]m_dPHd[X,Y]	[u,v] tendency from hydrostatic pressure gradient	ms ⁻²	[u,v]	[nx,ny,nz]
[U,V]m_dPsd[x,y]	[u,v] tendency from surface displacement	ms ⁻²	[u,v]	[nx,ny]
[U,V]m_Diss	[u,v] tendency from explicit dissipation	ms-2	[u,v]	[nx,ny,nz]
[U,V]m_Impl	[u,v] tendency from implicit dissipation (vertical)	ms ⁻²	[u,v]	[nx,ny,nz]
[U,V]m_Ext	[u,v] tendency from external forcing (wind)	ms- ²	[u,v]	[nx,ny,nz]
AB_g[U,V]	[u,v] tendency from Adams-Bashforth timestepping	ms ⁻²	[u,v]	[nx,ny,nz]

$$\frac{TOTUTEND(i,j,k)}{86400} = Um_Advec(i,j,k) + Um_dPHdx(i,j,k) + Um_dPsdx(i,j) \\ + Um_Diss(i,j,k) + Um_Impl(i,j,k) + Um_Ext(i,j,k) + AB_gU(i,j,k)$$

$$\frac{TOTVTEND(i,j,k)}{86400} = Vm_Advec(i,j,k) + Vm_dPHdy(i,j,k) + Vm_dPsdy(i,j) \\ + Vm_Diss(i,j,k) + Vm_Impl(i,j,k) + Vm_Ext(i,j,k) + AB_gV(i,j,k)$$

for ASTE_R1 and ECCOV4r4. NB not true U/V, strictly X/Y-dir velocity

MITgcm Momentum Budget: explicit vs implicit

```
forward_step
    - dynamics
         - calc_grad_phi_surf Explicit sfc PGF, output = [phiSurfX, phiSurfY]
         ido k = 1,Nr
         !- - calc_phi_hyd
                  ■CALL DIAGNOSTIC_SCALE_FILL (dPhiHydX,tmpFac,1,'Um_dPHdx',k,1,2,bi,bj,myThid)

    — mom_vecinv Compute remaining explicit tendencies (dissipation, Coriolis, inertia)

              timestep Compute remaining tendency from external forcing & accelerate flow
                    -- {\sf adams\_bashforth2} Extrapolate forward
         ENDDO
  Compute & apply forcing from implicit dissipation
   - solve_for_pressure Solve elliptic eq for p and update free surface displacement
      momentum_correction_step velocity correction to remove divergence
         ■CALL DIAGNOSTIC_SCALE_FILL (gU_eta, 'Um_dPsdx',1,1,2,bi,bj,myThid)
   e.g., PGF diagnostics in ASTE_R1
```

MITgcm Momentum Budget: diagnostic output

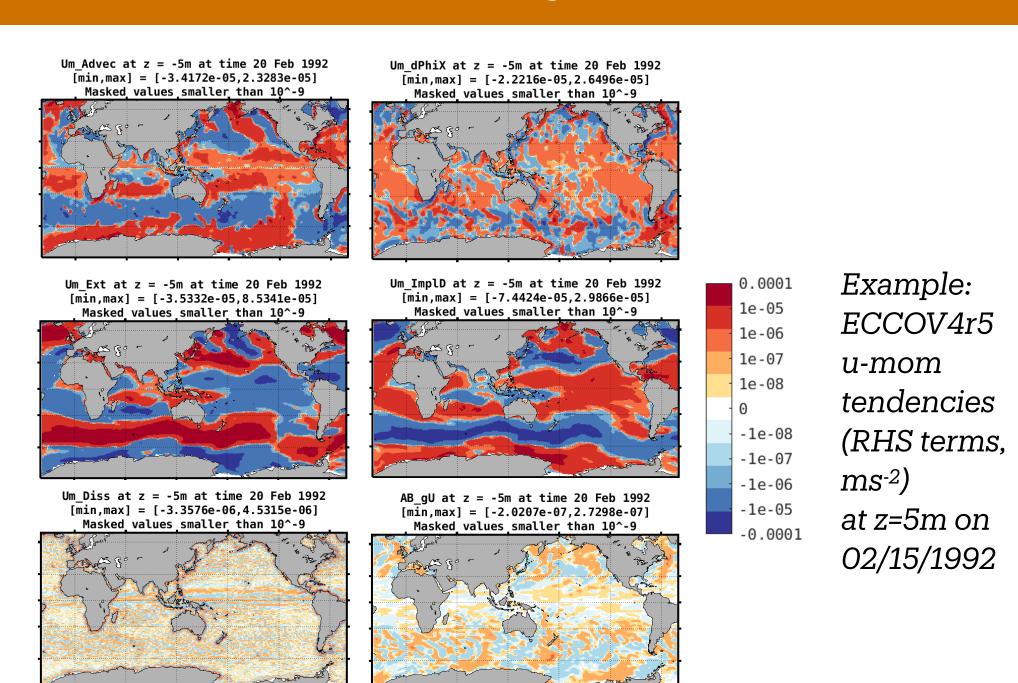
Diagnostic	Description (units)	Units	Location
TOT[U,V]TEND	[u,v] total Eulerian tendency	ms-2	[u,v]
[U,V]m_Advec	[u,v] tendency from inertia + Coriolis	ms-2	[u,v]
[U,V]m_dPhi[X,Y]	[u,v] tendency from pressure gradient (hydrostatic + surface)	ms-2	[u,v]
[U,V]m_Diss	[u,v] tendency from explicit dissipation	ms ⁻²	[u,v]
[U,V]m_ImplD	[u,v] tendency from implicit dissipation (=vertical)	ms-2	[u,v]
[U,V]m_Ext	[u,v] tendency from external forcing (=wind)	ms-2	[u,v]
AB_g[U,V]	[u,v] tendency from Adams-Bashforth timestepping	ms-2	[u,v]

$$\begin{split} TOTUTEND(i,j,k) &= Um_Advec(i,j,k) + Um_dPhiX(i,j,k) \\ &+ Um_Diss(i,j,k) + Um_ImplD(i,j,k) + Um_Ext(i,j,k) + AB_gU(i,j,k) \end{split}$$

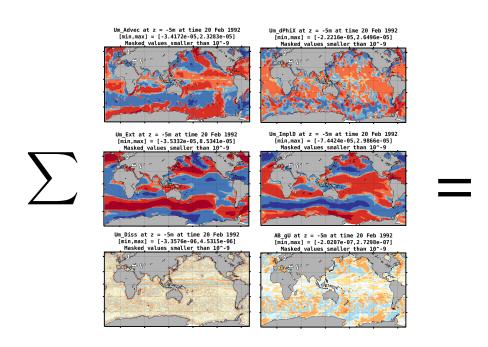
$$\begin{split} TOTVTEND(i,j,k) &= Vm_Advec(i,j,k) + Vm_dPhiY(i,j,k) \\ &+ Vm_Diss(i,j,k) + Vm_ImplD(i,j,k) + Vm_Ext(i,j,k) + AB_gV(i,j,k) \end{split}$$

for ECCOV4r5. NB not true U/V, strictly X/Y-dir velocity on tiles

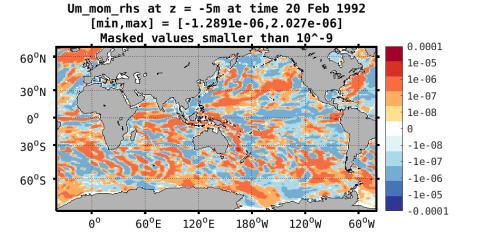
MITgcm Momentum Budget: diagnostic output


Diagnostic	Description (units)	Units	Location
TOT[U,V]TEND	[u,v] total Eulerian tendency	ms-2	[u,v]
[U,V]m_Advec	[u,v] tendency from inertia + Coriolis	ms ⁻²	[u,v]
[U,V]m_dPhi[X,Y]	[u,v] tendency from pressure gradient (hydrostatic + surface)	ms-2	[u,v]
[U,V]m_Diss	[u,v] tendency from explicit dissipation	ms-2	[u,v]
[U,V]m_ImplD	[u,v] tendency from implicit dissipation (=vertical)	ms ⁻²	[u,v]
[U,V]m_Ext	[u,v] tendency from external forcing (=wind)	ms ⁻²	[u,v]
AB_g[U,V]	[u,v] tendency from Adams-Bashforth timestepping	ms-2	[u,v]

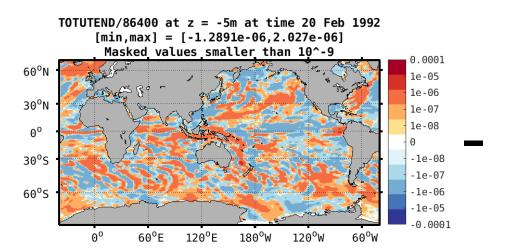
To avoid distraction sometimes helps to:


- combine TOT[U,V]TEND and AB_g[U,V]
- combine [U,V]m_ImplD and [U,V]m_Diss

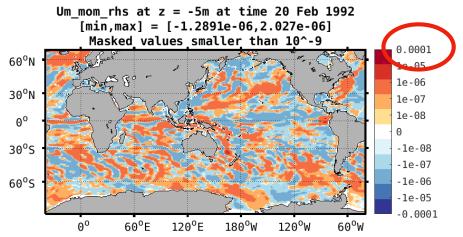
for ECCOV4r5. NB not true U/V, strictly X/Y-dir velocity on tiles


ECCCOV4r5 Momentum Budget Closure

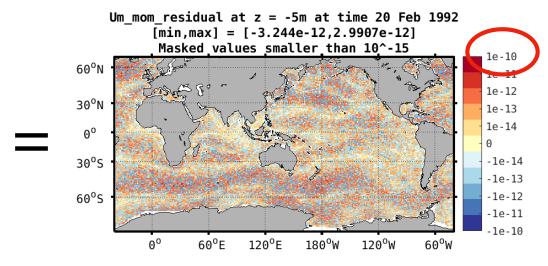
ECCCOV4r5 Momentum Budget Closure



RHS terms



ECCCOV4r5 Momentum Budget Closure


TOTUTEND

E RHS terms

RESIDUAL

Momentum
budget closure
at every grid cell
at all times

Momentum Budget Diagnostic Output - Extra terms

$$-\mathbf{u} \cdot \nabla \mathbf{u} = -\boldsymbol{\zeta} \times \mathbf{u} - \nabla \left[\frac{1}{2} (\mathbf{u} \cdot \mathbf{u}) \right] = -\boldsymbol{\zeta} \times \mathbf{u} - \nabla KE,$$

$$= \begin{bmatrix} -\zeta_2 w + \zeta_3 v \\ \zeta_1 w - \zeta_3 u \\ -\zeta_1 v + \zeta_2 u \end{bmatrix} - \nabla KE,$$

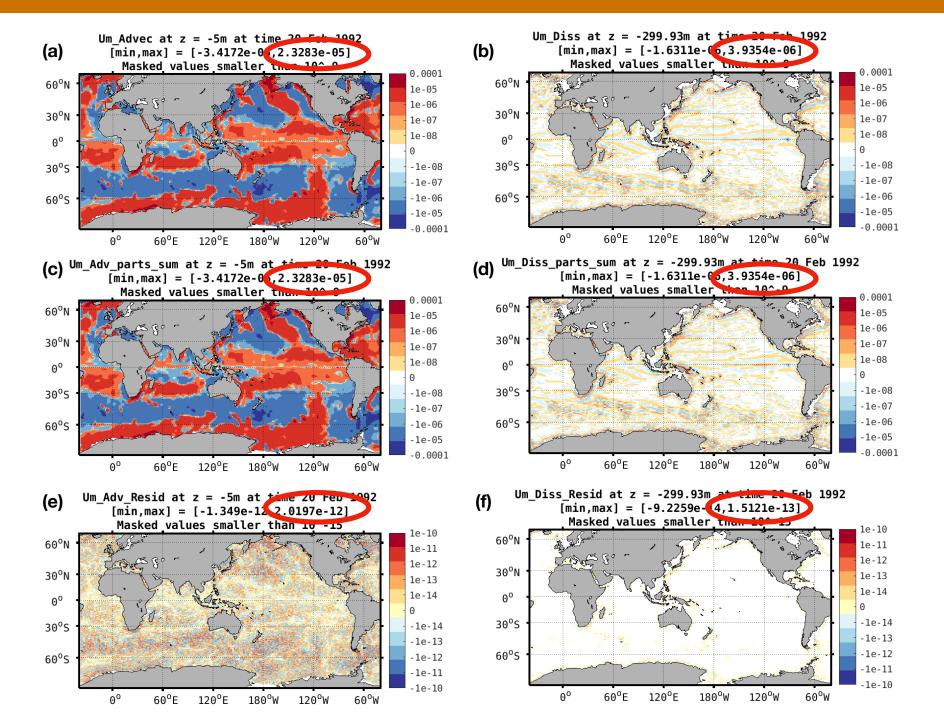
Diagnostic	Description (units)	Units	Location	Dims
[U,V]m_Cori	[u,v] tendency from Coriolis	ms ⁻²	[u,v]	[nx,ny,nz]
[U,V]m_AdvRe	[u,v] tendency from vertical shears $[-\zeta_2 w, \zeta_1 w]$	ms ⁻²	[u,v]	[nx,ny,nz]
[U,V]m_AdvZ3	[u,v] tendency from "nonlinear Coriolis" $[\zeta_3 v, -\zeta_3 u]$	ms ⁻²	[u,v]	[nx,ny,nz]
[U,V]m_dKEd[x,y]	[u,v] tendency from KE gradient $[-\partial \mathrm{KE}/\partial x, -\partial \mathrm{KE}/\partial y]$	ms- ²	[u,v]	[nx,ny,nz]

$$\begin{split} Um_Advec(i,j,k) &= Um_Cori(i,j,k) \\ &+ Um_AdvZ3(i,j,k) + Um_AdvRe(i,j,k) + Um_dKEdx(i,j,k) \end{split}$$

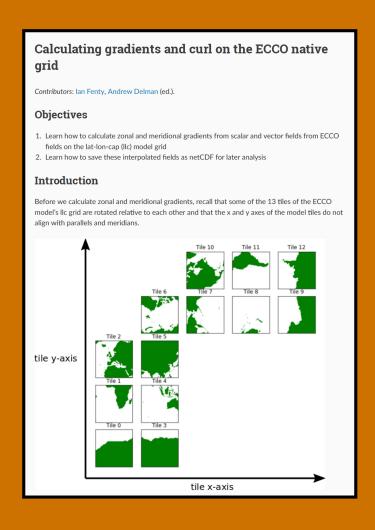
(Analogous decomposition for Vm_Advec)

for ASTE_R1, ECCOV4r4, ECCOV4r5. NB not true U/V, strictly X/Y-dir velocity

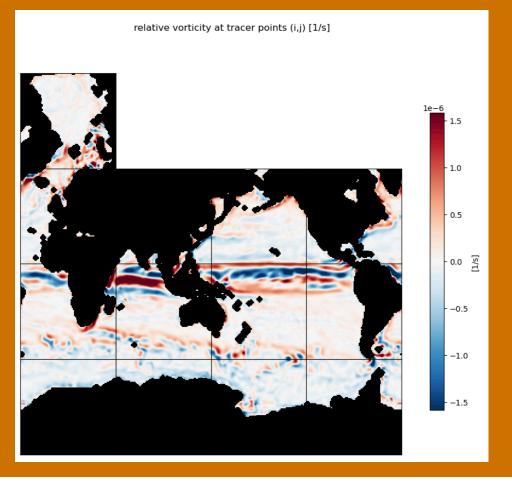
Momentum Budget Diagnostic Output - Extra terms


Diagnostic	Description (units)	Units	Location	Dims
[U,V]m_Diss2	[u,v] tendency from laplacian viscosity	ms ⁻²	[u,v]	[nx,ny,nz]
[U,V]m_Diss4	[u,v] tendency from biharmonic viscosity	ms ⁻²	[u,v]	[nx,ny,nz]
[U,V]m_SidDrag	[u,v] tendency from side drag	ms-2	[u,v]	[nx,ny,nz]
[U,V]m_BotDrag	[u,v] tendency from bottom drag	ms ⁻²	[u,v]	[nx,ny,nz]
[U,V]m_ShIDrag	[u,v] tendency from shelf ice drag	ms ⁻²	[u,v]	[nx,ny,nz]

$$\begin{split} Um_Diss(i,j,k) &= Um_Diss2(i,j,k) + Um_Diss4(i,j,k) \\ &+ UBotDrag(i,j,k) + USidDrag(i,j,k) + \frac{UShIDrag(i,j,k)}{UShIDrag(i,j,k)} \end{split}$$


(Analogous decomposition for Vm Diss)

for ASTE_R1, ECCOV4r4, ECCOV4r5. NB not true U/V, strictly X/Y-dir velocity


Momentum Budget Diagnostic Output - Extra terms

Vorticity Budgets: See Ian & Andrew's tutorial in [ecco-2025] Jupyter book

Calculating gradients of vector fields located on the 'u' and 'v' points (vorticity/divergence)

ECCO Heat Budget Tutorial

MITgcm Heat Budget

$$\frac{\partial(s^*\theta)}{\partial t} = -\nabla_{z^*}(s^*\theta \mathbf{v}_{res}) - \frac{\partial(\theta w_{res})}{\partial z^*} - s^*(\nabla \cdot \mathbf{F}_{\text{diff}}^{\theta}) + s^*F_{\text{sfc}}^{\theta}$$

$$G_{\text{diffusion}}^{\theta}$$

$$G_{\text{diffusion}}^{\theta}$$

Rescaled height coordinate: $z^* = \frac{z - \eta(x, y, t)}{H(x, y) + \eta(x, y, t)} H(x, y)$

Scale factor: $s^*(x, y, k, t) = 1 + \frac{\eta(x, y, t)}{H(x, y)}$

MITgcm Heat Budget Diagnostics

Diagnostic	Time	Description (units)	Units
ETAN	Snapshot	Surface height anomaly	m
ТНЕТА	Snapshot	Potential temperature	°C
TFLUX	Average	Total heat flux	Wm ⁻²
oceQsw	Average	Net shortwave radiation	Wm ⁻²
ADVx_TH	Average	X-dir advective flux of pot. temp.	$^{\circ}$ C m 3 s $^{-1}$
ADVy_TH	Average	Y-dir advective flux of pot. temp.	$^{\circ}$ C m 3 s $^{-1}$
ADVr_TH	Average	Vertical advective flux of pot. temp.	$^{\circ}$ C m 3 s-1
DFrI_TH	Average	Implicit vertical diffusive flux of pot. temp.	$^{\circ}$ C m 3 s-1
DFrE_TH	Average	Explicit vertical diffusive flux of pot. temp.	$^{\circ}\text{C m}^{3}\text{s}^{-1}$
DFxE_TH	Average	Explicit X-dir diffusive flux of pot. temp.	$^{\circ}$ C m 3 s $^{-1}$
DFyE_TH	Average	Explicit Y-dir diffusive flux of pot. temp.	$^{\circ}$ C m 3 s $^{-1}$

MITgcm Heat Tendency Terms

```
for t = t_1, t_2, \dots t_{T-1}, t_T do
                                                                                                 \triangleright Loop over T time steps (months) t
      U_{i,i,k} = ADVx_TH\{t\}
                                                                                  \triangleright 3-D average zonal advection over month t
      V_{i.i.k} = \mathtt{ADVy\_TH}\left\{t\right\}
                                                                        \triangleright 3-D average meridional advection over month t
      W_{i,i,k} = \mathtt{ADVr}_{\mathtt{T}}\mathtt{TH}\left\{t\right\}
                                                                              \triangleright 3-D average vertical advection over month t
      \mathcal{U}_{i,j,k} = \mathsf{DFxE}_{-}\mathsf{TH}\left\{t\right\}
                                                                                    \triangleright 3-D average zonal diffusion over month t
      \mathcal{V}_{i,j,k} = \mathsf{DFyE}_{-}\mathsf{TH}\left\{t\right\}
                                                                          \triangleright 3-D average meridional diffusion over month t
      \mathcal{W}_{i,j,k}^{E} = \mathsf{DFyE}_{-}\mathsf{TH}\left\{t\right\}
                                                              \triangleright 3-D average vertical diffusion (explicit) over month t
      \mathcal{W}_{i,j,k}^{I} = \mathtt{DFyI}_{-}\mathtt{TH}\left\{t
ight\}
                                                             \triangleright 3-D average vertical diffusion (implicit) over month t
      N_{i,i}^{(0)} = \text{ETAN}\left\{t - \Delta t\right\}
                                                                        \triangleright 2-D surface height snapshot at start of month t
      N_{i,i}^{(f)} = \text{ETAN}\left\{t\right\}
                                                                          \triangleright 2-D surface height snapshot at end of month t
      T_{i,i,k}^{(0)} = \mathtt{THETA}\left\{t - \Delta t\right\}
                                                                          \triangleright 3-D temperature snapshot at start of month t
      T_{i,j,k}^{(f)} = \text{THETA}\left\{t\right\}
                                                                             \triangleright 3-D temperature snapshot at end of month t
      v_{i,j,k} = h_{i,j,k} A_{i,j} \Delta z_k
                                                                                                                                         ▶ Grid volume
      for i = i_1, i_2, \dots i_{I-1}, i_I do
                                                                                                            \triangleright Loop over I longitude cells i
            for j = j_1, j_2, \dots, j_{J-1}, j_J do
                                                                                                              \triangleright Loop over J latitude cells j
                  s_{i,j}^{*(0)} = \left(1 + N_{i,j}^{(0)} / H_{i,j}\right)
                  s_{i,j}^{*(f)} = \left(1 + N_{i,j}^{(f)} / H_{i,j}\right)
                  for k = k_1, k_2, \dots k_{K-1}, k_K do
                                                                                                             \triangleright Loop over K vertical cells k
                        G_{i,j,k}^{\theta,tot} = \left(T_{i,j,k}^{(f)} s_{i,j}^{*(f)} - T_{i,j,k}^{(0)} s_{i,j}^{*(0)}\right) / \Delta t
                         G_{i,j,k}^{\theta,advH} = \left(U_{i,j,k} - U_{i+1,j,k} + V_{i,j,k} - V_{i,j+1,k}\right) / v_{i,j,k}
                         G_{i,j,k}^{	heta,diffH} = \left(\mathcal{U}_{i,j,k} - \mathcal{U}_{i+1,j,k} + \mathcal{V}_{i,j,k} - \mathcal{V}_{i,j+1,k}\right)/v_{i,j,k}
                        G_{i,j,k}^{\theta,advV} = \left[ (1 - \delta_{k,K}) W_{i,j,k+1} - W_{i,j,k} \right] / v_{i,j,k}
                         G_{i,j,k}^{\theta,diffV} = \left[ \left(1 - \delta_{k,K}\right) \left( \mathcal{W}_{i,j,k+1}^E + \mathcal{W}_{i,j,k+1}^I \right) - \mathcal{W}_{i,j,k}^E - \mathcal{W}_{i,j,k}^I \right] / v_{i,j,k}
                         G_{i,j,k}^{\theta,adv} = G_{i,j,k}^{\theta,advH} + G_{i,j,k}^{\theta,advV}
                  end for
             end for
      end for
end for
```

	A Note on Practical Evaluation of Budgets in ECCO Version 4 Release 3	
	Christopher G. Piecuch (cpiecuch@aer.com)	
	June 16, 2017	
C	ontents	
1	Introduction	:
	1.1 Scope	
2	Obtaining ECCOv4 Release 3	2
3	Model Configuration	
4	Budgets Evaluated for Extensive Quantities	
٠	4.1 Volume Conservation	
	4.2 Heat Conservation	
	4.2.1 Geothermal Flux	10
	4.3 Salt Conservation	12
5	Budgets Estimated for Intensive Quantities	1
	5.1 Salinity Budget	1
A	Example Matlab Code and the gcmfaces Framework	1
	A.1 The gcnfaces Framework	1
	A.2 Example Matlab code	1

MITgcm Heat Tendency Terms

```
for t = t_1, t_2, \dots t_{T-1}, t_T do
                                                                                             \triangleright Loop over T time steps (months) t
     U_{i,j,k} = ADVx_TH\{t\}
                                                                               \triangleright 3-D average zonal advection over month t
     V_{i.i.k} = \mathtt{ADVy\_TH}\left\{t
ight\}
                                                                     \triangleright 3-D average meridional advection over month t
     W_{i.i.k} = \mathtt{ADVr\_TH}\left\{t\right\}
                                                                           \triangleright 3-D average vertical advection over month t
                                                                                                                                                                                                                                     Contents
     \mathcal{U}_{i,i,k} = \mathsf{DFxE}_{\mathsf{-}}\mathsf{TH}\left\{t\right\}
                                                                                 \triangleright 3-D average zonal diffusion over month t
     \mathcal{V}_{i,j,k} = \mathtt{DFyE\_TH}\left\{t\right\}
                                                                        \triangleright 3-D average meridional diffusion over month t
     \mathcal{W}_{i,j,k}^E = \mathsf{DFyE}_-\mathsf{TH}\left\{t\right\}
                                                            \triangleright 3-D average vertical diffusion (explicit) over month t
     \mathcal{W}_{i,i,k}^{I} = \mathtt{DFyI}_{-}\mathtt{TH}\left\{t\right\}
                                                           \triangleright 3-D average vertical diffusion (implicit) over month t
     N_{i,i}^{(0)} = \operatorname{ETAN}\left\{t - \Delta t\right\}
                                                                     \triangleright 2-D surface height snapshot at start of month t
     N_{i,i}^{(f)} = \text{ETAN}\left\{t\right\}
                                                                       \triangleright 2-D surface height snapshot at end of month t
     T_{i,i,k}^{(0)} = \mathtt{THETA}\left\{t - \Delta t\right\}
                                                                        \triangleright 3-D temperature snapshot at start of month t
     T_{i,j,k}^{(f)} = \mathtt{THETA}\left\{t\right\}
                                                                          \triangleright 3-D temperature snapshot at end of month t
     v_{i,j,k} = h_{i,j,k} A_{i,j} \Delta z_k
                                                                                                                                     ▶ Grid volume
     for i = i_1, i_2, \dots i_{I-1}, i_I do
                                                                                                        \triangleright Loop over I longitude cells i
            for j = j_1, j_2, \dots j_{J-1}, j_J do
                                                                                                          \triangleright Loop over J latitude cells j
                 for k = k_1, k_2, \dots k_{K-1}, k_K do
                                                                                                         \triangleright Loop over K vertical cells k
                       G_{i,j,k}^{\theta,tot} = \left(T_{i,j,k}^{(f)} s_{i,j}^{*(f)} - T_{i,j,k}^{(0)} s_{i,j}^{*(0)}\right) / \Delta t
                        G_{i,j,k}^{\theta,advH} = \left(U_{i,j,k} - U_{i+1,j,k} + V_{i,j,k} - V_{i,j+1,k}\right) / v_{i,j,k}
                        G_{i,j,k}^{\theta,diffH} = \left(\mathcal{U}_{i,j,k} - \mathcal{U}_{i+1,j,k} + \mathcal{V}_{i,j,k} - \mathcal{V}_{i,j+1,k}\right) / v_{i,j,k}
                        G_{i,j,k}^{\theta,advV} = \left[ (1 - \delta_{k,K}) W_{i,j,k+1} - W_{i,j,k} \right] / v_{i,j,k}
                        G_{i,i,k}^{\theta,diffV} = \left[ \left( 1 - \delta_{k,K} \right) \left( \mathcal{W}_{i,i,k+1}^E + \mathcal{W}_{i,i,k+1}^I \right) - \mathcal{W}_{i,i,k}^E - \mathcal{W}_{i,i,k}^I \right] / v_{i,j,k}
                                                                                                                                                                      t=t_2
                       G_{i,j,k}^{\theta,adv} = G_{i,j,k}^{\theta,advH} + G_{i,j,k}^{\theta,advV}
                        G_{i,i,k}^{\theta,diff} = G_{i,i,k}^{\theta,diffH} + G_{i,i,k}^{\theta,diffV}
                 end for
            end for
                                                                                                                                           {\rm square}. {\rm ITER}_{t2}. data
                                                                                       snapshot files:
      end for
```

A Note on Practical Evaluation of Budgets in ECCO Version 4 Release 3
Christopher G. Piscuch (episcuch@aer.com)
June 16, 2017

Contents

1 Introduction
2 :
1.1 Scope 2 :
2 Obtaining ECCOv4 Release 3 3 .
3 Model Configuration 3 ;
4 Budgets Evaluated for Extensive Quantities 5 ;
4.1 Volume Conservation 5 ;
4.2 Heat Conservation 7 ;
4.2.1 Geothermal Flux 10 ;
4.3 Salt Conservation 12 :
5 Budgets Estimated for Intensive Quantities 16 :
5 .1 Salimity Budget 16 :
5 .1 Salimity Budget 16 :
A Example Matlab Code and the genfaces Framework 18 :
A.1 The genfaces Framework 18 :
A.2 Example Matlab code . 19 :

Contents 1 :

A Example Matlab code . 19 :

Contents 2 :

Contents 2 :

Contents 2 :

Contents 2 :

Contents 3 :

Contents 4 :

Contents 4 :

Contents 5 :

A Example Matlab code . 19 :

Contents 6 :

Contents 7 :

Contents 7 :

A Example Matlab code . 19 :

Contents 6 :

Contents 7 :

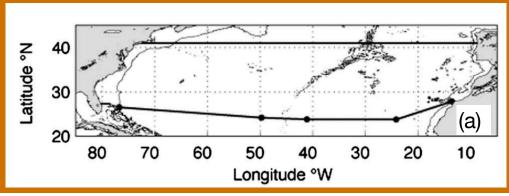
A Example Matlab code . 19 :

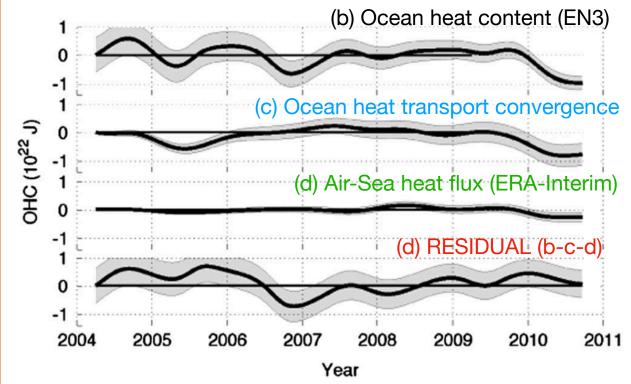
Contents 7 :

Cont

 $t = t_3$

 $\$\{\texttt{varname}\}.\$\{\texttt{ITER}_{t3}\}.\texttt{data}$


monthly mean files written at end of averaging period: \$\{\varname\}.\\$\{\text{ITER}_{t3}\}.\data


MITgcm Heat Tendency Terms

```
\triangleright Loop over T time steps (months) t
for t = t_1, t_2, \dots t_{T-1}, t_T do
      U_{i,j,k} = 	exttt{ADVx\_TH}\left\{t
ight\}
                                                                                        \triangleright 3-D average zonal advection over month t
      V_{i,j,k} = 	exttt{ADVy\_TH}\left\{t
ight\}
                                                                             \triangleright 3-D average meridional advection over month t
      W_{i,i,k} = \mathtt{ADVr}_\mathtt{T}\mathtt{TH}\left\{t\right\}
                                                                                    \triangleright 3-D average vertical advection over month t
      \mathcal{U}_{i,j,k} = \mathtt{DFxE}_{-}\mathtt{TH}\left\{t\right\}
                                                                                          \triangleright 3-D average zonal diffusion over month t
      \mathcal{V}_{i,j,k} = \mathsf{DFyE}_{-}\mathsf{TH}\left\{t\right\}
                                                                                \triangleright 3-D average meridional diffusion over month t
      \mathcal{W}_{i,j,k}^{E} = \mathsf{DFyE}_{-}\mathsf{TH}\left\{t\right\}
                                                                  \triangleright 3-D average vertical diffusion (explicit) over month t
      \mathcal{W}_{i,j,k}^{I} = \mathtt{DFyI}_{-}\mathtt{TH}\left\{t
ight\}
                                                                  \triangleright 3-D average vertical diffusion (implicit) over month t
      N_{i,i}^{(0)} = \text{ETAN}\left\{t - \Delta t\right\}
                                                                             \triangleright 2-D surface height snapshot at start of month t
      N_{i,i}^{(f)} = \text{ETAN}\left\{t\right\}
                                                                              \triangleright 2-D surface height snapshot at end of month t
      T_{i,j,k}^{(0)} = \text{THETA}\left\{t - \Delta t\right\}
                                                                                \triangleright 3-D temperature snapshot at start of month t
      T_{i,i,k}^{(f)} = \mathtt{THETA}\left\{t\right\}
                                                                                  \triangleright 3-D temperature snapshot at end of month t
      v_{i,j,k} = h_{i,j,k} A_{i,j} \Delta z_k
                                                                                                                                                   ▶ Grid volume
      for i = i_1, i_2, \dots i_{I-1}, i_I do
                                                                                                                    \triangleright Loop over I longitude cells i
            for j = j_1, j_2, \dots j_{J-1}, j_J do
                                                                                                                     \triangleright Loop over J latitude cells j
                   s_{i,j}^{*(0)} = \left(1 + N_{i,j}^{(0)} / H_{i,j}\right)
                   s_{i,j}^{*(f)} = \left(1 + N_{i,j}^{(f)} / H_{i,j}\right)
                   for k = k_1, k_2, \dots k_{K-1}, k_K do
                                                                                                                     \triangleright Loop over K vertical cells k
                         G_{i,j,k}^{\theta,tot} = \left(T_{i,j,k}^{(f)} s_{i,j}^{*(f)} - T_{i,j,k}^{(0)} s_{i,j}^{*(0)}\right) / \Delta t
G_{i,j,k}^{\theta,advH} = \left(U_{i,j,k} - U_{i+1,j,k} + V_{i,j,k} - V_{i,j+1,k}\right) / v_{i,j,k}
G_{i,j,k}^{\theta,diffH} = \left(\mathcal{U}_{i,j,k} - \mathcal{U}_{i+1,j,k} + \mathcal{V}_{i,j,k} - \mathcal{V}_{i,j+1,k}\right) / v_{i,j,k}
                          G_{i,j,k}^{\theta,advV} = \left[ (1 - \delta_{k,K}) W_{i,j,k+1} - W_{i,j,k} \right] / v_{i,j,k}
                          G_{i,j,k}^{\theta,diffV} = \left[ \left(1 - \delta_{k,K}\right) \left(\mathcal{W}_{i,j,k+1}^E + \mathcal{W}_{i,j,k+1}^I\right) - \mathcal{W}_{i,j,k}^E - \mathcal{W}_{i,j,k}^I\right] / v_{i,j,k}
                          G_{i,j,k}^{\theta,adv} = G_{i,j,k}^{\theta,advH} + G_{i,j,k}^{\theta,advV}
                    end for
             end for
       end for
end for
```

	ONTENTS	1	
	A Note on Practical Evaluation of Budgets in ECCO Version 4 Release 3		
	Christopher G. Piecuch (cpiecuch@aer.com)		
	June 16, 2017		
C	ontents		
1	Introduction	2	
	1.1 Scope	2	
2	Obtaining ECCOv4 Release 3	3	
3	Model Configuration	3	
4	Budgets Evaluated for Extensive Quantities	5	
	4.1 Volume Conservation	5	
	4.2 Heat Conservation	7	
	4.2.1 Geothermal Flux	10	
	4.3 Salt Conservation	12	
5	Budgets Estimated for Intensive Quantities	16	
	5.1 Salinity Budget	16	
A	5.1 Salinity Budget la A Example Matlab Code and the gcmfaces Framework li		
	A.1 The gcnfaces Framework	18	
	A.2 Example Matlab code	19	

Revisit Cunningham et al., 2014 heat budget calculation in the North Atlantic

Objectives

- Diagnose V4r5 OHC'
- Obtain closed budget
- Determine driver of cold anomaly