
Running the ECCO Model and Adjoint

Ou Wang, Ian Fenty, and Ichiro Fukumori

Jet Propulsion Laboratory, California Institute of Technology

ECCO Summer School 2025 Pacific Grove, California May 19-30, 2025

© 2025 All rights reserved

Estimating the Circulation & Climate of the Ocean (ECCO) ocean state estimates:
Synthesis of global ocean data with MITgcm using an adjoint-based inverse estimation method

TOPEX-POSEIDON

JASON I

JASON 2

JASON 3

GRACE, GRACE-FO

AVHRR

Aquarius/SAC-D

SARAL/AltiKa

Argo

Profiling

Floats

CTD
• GO-SHIP

• WOCE

• NODC

• ACES

XBT

Marine

mammals

MIT general circulation model

Ice-tethered

profilers

Instrumented

moorings

Key Components

• Observations to constrain the model along with their uncertainties

• Model (MITgcm)
• Grid

• Bathymetry

• Surface forcing and other (e.g., geothermal forcing, ice-shelf melt)

• Mixing coefficients

• Uncertainty for control

• Algorithmic Differentiation Tools (e.g., TAF, Tapenade) to generate adjoint code

ECCO Ocean State Estimates: Synthesis of global ocean and sea-ice
observations with MITgcm using an adjoint-based inverse estimation
method

• Version 4 Release 5 (V4r5, latest release) and
Version 4 Release 4 (V4r4)

• Multi-decadal global ocean and sea-ice state
estimate; observation constrained for 1992-2019
(V4r5) and simulation only for 2020-present

• Constrained by satellite altimetry, GRACE, Aquarius,
AVHRR, ARGO, CTD, XBT, satellite sea-ice
measurements (concentration, freeboard)...;

• Including ice-shelves and ice-fronts around
Antarctic;

• Adjusting atmospheric forcing, mixing parameters,
initial conditions, and ice-shelf heat transfer
coefficient (only for V4r5) (controls);

• Model: non-linear free surface boundary and real
freshwater boundary conditions;

• A physically consistent solution.

ECCO Version 4
1992-2019 mean surface current speed (cm/s)

Global mean ssh and obp (cm)

ECCO V4

Model Grid: Lat-Lon-Cap90 (LLC90)

1

2
3

4

5

Horizontal resolution 22km to 111km

Vertical resolution 10m to 457m from surface to bottom @ 6145m

X

Y

Forget et al. (2015)

An iterative process to obtain optimized
controls

Backward (adjoint)

Forward

Backward (adjoint)

Forward

Cost

Cost

iter. 0
ctrl=0

iter. 1
 ctrl

optimization

Forward
iter. N

ctrl
ECCO V4

Backward (adjoint)

Forward
Cost

iter.
N-1
 ctrl

optimization

optimization

The final solution—e.g., ECCO V4r5—is a
forward simulation forced with optimized
ocean surface forcing, mixing parameters,
and initial conditions.

Reproducing ECCO V4 (Forward Simulation)

• Why to reproduce ECCO V4
▪ Generate different model outputs

o Sampling frequency from monthly to weekly
o Output other model fields

▪ Forward sensitivity experiments using different forcing, mixing, etc.

o Climatological forcing
o Increased/reduced mixing parameters

• Steps to Conduct Forward Run
▪ Download the Model Code
▪ Obtain Input Files
▪ Compile the Code
▪ Submit the Forward Run Script

Executable

MITgcm code

C
o

m
p

ilatio
n

Input files

Grid
information

Forcing

Bathymetry,
mixing

parameters

Namelists

Weights

Observations

ECCO V4Computer

Controls

Others

Initial
conditions

Tutorial for Reproducing ECCO V4r4
Part of Summer School Tutorials
https://ecco-summer-school.github.io/ecco-2025/tutorials/pcluster/reproducing_v4r4.html

• Using MITgcm version checkpoint66g
and V4r4-specifc code

• Run with 96 CPUs (For llc90 grid, the
globe can be split into 117 30×30 tiles;
21 tiles are over land and therefore
skipped).

• Tailored for the P-Cluster
o Suitable modules (e.g., compilers)

have been configured
o Input files have been pre-

downloaded to the P-Cluster
• A general reproduction document for

ECCO V4 is available on Zenodo (DOI:
10.5281/zenodo.7789915), , including
instructions for downloading the input
files.

https://github.com/MITgcm/MITgcm.git
https://github.com/ECCO-GROUP/ECCO-v4-Configurations/tree/master/ECCOv4%20Release%204
https://doi.org/10.5281/zenodo.7789915

Tutorial for Reproducing ECCO V4
Part of Summer School Tutorials
https://ecco-summer-school.github.io/ecco-2025/tutorials/pcluster/reproducing_v4r5.html

• Essentially the same procedure as
reproducing ECCO V4r4

• Using MITgcm version checkpoint68g
and V4r5-specifc code

• Run with 113 CPUs; more CPUs are used
than in V4r4 because V4r5 includes ice
sheets around Antarctica, which
introduce more wet tiles.

• Code and input files are all available on
the P-Cluster

https://github.com/MITgcm/MITgcm.git
https://github.com/ECCO-GROUP/ECCO-v4-Configurations/tree/master/ECCOv4%20Release%205

Steps to Reproduce ECCO V4
(All commands are available in the reproduction tutorials)

Log in to the P-Cluster

ssh -i /path/to/privatekey -X USERNAME@34.210.1.198
cd /efs_ecco/USERNAME

Modules
Necessary modules should be automatically loaded. If not, modify your shell configuration file,
such as .bashrc, following the instruction described in the tutorial of Getting Started with the P-
Cluster

https://ecco-summer-school.github.io/ecco-2025/preliminary/pcluster-login.html
https://ecco-summer-school.github.io/ecco-2025/preliminary/pcluster-login.html

Steps to Reproduce ECCO V4 (continued)

Get the MITgcm model and V4 specific code and namelist files
• The code and namelist files have been downloaded to the P-Cluster.

Users can copy them directly to their preferred local directory (see
below; replace USERNAME with the user’s own username.)

• They are also available on GitHub; see the tutorial for details.
• The namelist files contain run-time parameters.

rsync -av /efs_ecco/ECCO/V4/r4/WORKINGDIR /efs_ecco/USERNAME/r4/

Current directory structure of /efs_ecco/USERNAME/r4/:

WORKINGDIR
├── ECCO-v4-Configurations
├── ECCOV4
│ └── release4
│ ├── code
│ └── namelist
└── MITgcm

Steps to Reproduce ECCO V4 (continued)

Input files for atmospheric forcing, initial conditions, and others
• Have also been pre-downloaded into the P-Cluster
• Total data volume is a few hundreds Gigabytes
• No need to copy them to the user’s working directory. The run script

will use a symbolic link to access the files.

cd /efs_ecco/USERNAME/r4/
ln -s /efs_ecco/ECCO/V4/r4/input .

Current directory structure of /efs_ecco/USERNAME/r4/:

┌── WORKINGDIR
│ ├── ECCO-v4-Configurations
│ ├── ECCOV4
│ │ └── release4
│ │ ├── code
│ │ └── namelist
│ └── MITgcm
└── input

Steps to Reproduce ECCO V4 (continued)
Compile to generate the executable
For simplicity, assume current directory is /efs_ecco/USERNAME/r4/

cd WORKINGDIR/ECCOV4/release4
mkdir build
cd build
export ROOTDIR=../../../MITgcm
../../../MITgcm/tools/genmake2 -mods=../code -optfile=../code/linux_ifort_impi_aws_sysmodule -mpi
make depend
make all
cd ..

Create a build directory

Create an environment variable that will be used by MITgcm

../../../MITgcm/tools/genmake2 -mods=../code -optfile=../code/linux_ifort_impi_aws_sysmodule -mpi
• Generate a Makefile to be used by make (a build automation tool that generates executable)
• The file linux_ifort_impi_aws_sysmodule, which specifies compilation flags, libraries, etc. is tailored

for the P-Cluster.
• The -mpi option indicates that the code will be compiled as an MPI job to run in parallel using

multiple processors.

What does Makefile look like?

ROOTDIR = ../../../MITgcm
BUILDDIR = .
SOURCEDIRS = ../code $(ROOTDIR)/pkg/…

EXEDIR = .
EXECUTABLE = $(EXEDIR)/mitgcmuv
TOOLSDIR = $(ROOTDIR)/tools
OADTOOLS =

ENABLED_PACKAGES = -DALLOW_CAL -DALLOW_COST…
DISABLED_PACKAGES = -UALLOW_ADMTLM -UALLOW_AIM_V23…

Fortran compiler
FC = mpiifort
Fortran compiler
F90C =
C compiler
CC = mpiicc
 …

Steps to Reproduce ECCO V4 (continued)

After compilation, directory structure of /efs_ecco/USERNAME/r4/ is as follows:

┌── WORKINGDIR
│ ├── ECCO-v4-Configurations
│ ├── ECCOV4
│ │ └── release4
│ │ ├── code
│ │ ├── namelist
│ │ └── build
│ └── MITgcm
└── input

• make depend: determines code decencies: head files included
• make all: generates the executable (named mitgcmuv in build/)

mitgcmuv in build

Steps to Reproduce ECCO V4 (continued)

Run
• An example run script is provided in /efs_ecco/ECCO/V4/r4/scripts
• The P-Cluster uses Slurm as its batch job scheduler
• The example script conducts a three-month model integration from January 1, 1992, to

March 31, 1992. The script can be modified to perform 26-year (1992-2017) runs over
the full ECCO V4r4 model integration period

• sbatch submits a batch job to Slurm, based on the job configuration specified in the
script. The job script requests 3 nodes, with each node running 36 tasks.

• Once submitted, Slurm will display a message with the job ID, such as
 Submitted batch job 1181

• Users can monitor the job status by issuing the command squeue

cd WORKINGDIR/ECCOV4/release4
cp -p /efs_ecco/ECCO/V4/r4/scripts/run_script_slurm.bash .
sbatch run_script_slurm.bash

Other users cannot use idle CPUs in the 3 nodes

#!/bin/bash
#SBATCH -J ECCOv4r4
#SBATCH --nodes=3
#SBATCH --ntasks-per-node=36
#SBATCH --time=24:00:00
#SBATCH --exclusive
#SBATCH --partition=sealevel-c5n18xl-demand
#SBATCH --mem-per-cpu=1GB
#SBATCH -o ECCOv4r4-%j-out
#SBATCH -e ECCOv4r4-%j-out

Initialize and set up the environment.
umask 022
ulimit -s unlimited
source /etc/profile
source /shared/spack/share/spack/setup-env.sh
source /usr/share/modules/init/sh

Example run script
/efs_ecco/ECCO/V4/r4/scripts/run_script_slurm.bash

Set up environment

3 nodes

36 tasks per node
Requesting 24-hour wall time

Partition (i.e., queue) name
Each CPU has 1GB memory.

Standard output file is ECCOv4r4-NNN-out, where NNN is the job ID.
Standard error file is set to be the same as the Standard output file.

Job name

Load modules
module purge
module load intel-oneapi-compilers-2021.2.0-gcc-11.1.0-adt4bgf
module load intel-oneapi-mpi-2021.2.0-gcc-11.1.0-ibxno3u
module load netcdf-c-4.8.1-gcc-11.1.0-6so76nc
module load netcdf-fortran-4.5.3-gcc-11.1.0-d35hzyr
module load hdf5-1.10.7-gcc-9.4.0-vif4ht3
module list

Set environment variables
export FORT_BUFFERED=1
export MPI_BUFS_PER_PROC=128
export MPI_DISPLAY_SETTINGS=""

Example run script (continued)
/efs_ecco/ECCO/V4/r4/scripts/run_script_slurm.bash

Load modules

Set up more environment variables

Create run directory
mkdir -p "${basedir}/run"
cd "${basedir}/run" || exit # Change directory and exit if it fails

Example run script (continued)
/efs_ecco/ECCO/V4/r4/scripts/run_script_slurm.bash

Create run directory

Change into it

Link input files
ln -s ../namelist/* .
ln -s ${inputdir}/input_init/* .
…
ln -s ${inputdir}/input_forcing/control_weights/* .
ln -s ${inputdir}/native_grid_files/tile*.mitgrid .

Modify some namelist files, e.g., change the number of time steps to 3-mont
unlink data
cp -p ../namelist/data .
sed -i '/#nTimeSteps=2160,/ s/^#//; /nTimeSteps=227903,/ s/^/#/' data

Run the mitgcmuv executable with MPI using the specified number of processes
mpirun -np "${nprocs}" ./mitgcmuv

Steps to Reproduce ECCO V4 (continued)

After the run starts, directory structure of /efs_ecco/USERNAME/r4/ is as follows:

┌── WORKINGDIR
│ ├── ECCO-v4-Configurations
│ ├── ECCOV4
│ │ └── release4
│ │ ├── code
│ │ ├── namelist
│ │ ├── build
│ │ └── run
│ └── MITgcm
└── input

• Use squeue to check the job status.
• After the job completes, check whether it ended normally.

▪ Yes, if the last line of run/STDOUT.0000 is
 PROGRAM MAIN: Execution ended Normally

▪ Otherwise, the job does not end normally.

Results
WORKINGDIR/run

files

STDOUT.XXXX model configuration, monitored statistics
of model state variables

STDERR.XXXX any warnings

diags/*.{data,meta} outputs of the model state in binary
format

m_*.{data,meta}, misfit*.{data,meta}, … outputs from pkg/ecco for cost
calculation

xx* control adjustments

Expected files

Successful if the last line of STDOUT.0000 is:
PROGRAM MAIN: Execution ended Normally

Flowchart for Conducting the Run

Run script

STDOUT.XXXX,
STDERR.XXXX,

diags/*.{data, meta}
etc.

Normal
End?

Submit

Clean up

Check STDOUT.XXXX,
STDERR.XXXX for more info.

End

Yes

No

Namelist (runtime parameters)

filename

data Core runtime parameters

data.cal Specify model start time

data.pkg Individual package switch

data.diagnostic Diagnostics variables and output frequencies

data.exf Forcing files and formats

data.profiles In situ files

data.ecco Cost terms

data.gmredi GM-Redi parameters

data.seaice Sea-ice parameters

data.ctrl Control variables, weights

data.exch2 Tile exchange and blank tile parameters

Example modifications to namelist files
filename

data nTimeSteps=227903,

Change the value (# of time steps) changes the model integration
period. For example, the model runs for 3 months with:
nTimeSteps=2160,

data.diagnostic frequency(91) = 2635200.0,
fields(1,91) = 'SSH',
filename(91) = 'diags/SSH_mon_mean/SSH_mon_mean',

The above outputs monthly-mean SSH with frequency specifies
averaging period (in seconds). The following changes the namelists
above to output weekly-mean OBP:
frequency(91) = 604800.0,
fields(1,91) = ‘OBP',
filename(91) = 'diags/OBP_week_mean/OBP_week_mean',

data.exf atempfile = 'eccov4r4_tmp2m_degC',

The above specifies the air temperature forcing. Change it to some
modified forcing:
atempfile = 'eccov4r4_tmp2m_degC_modified',

Things to know to run it on another computer

• Have necessary modules installed
• Fortran compiler
• MPI
• netCDF

• Compilation option file
• linux_ifort_impi_aws_sysmodule may not work
• Start from one from the list in MITgcm/tools/build_options/. Pick up one

having the same operating system, machine name and compiler in the
filename as yours.

• Run out memory?
• Request more CPUs than the number of tiles

How to run adjoint and conduct
optimization?

Backward (adjoint)

Forward

Backward (adjoint)

Forward

Cost

Cost

iter. 0
ctrl=0

iter. 1
 ctrl

optimization

Forward
iter. n

ctrl
ECCO V4

Backward (adjoint)

Forward
Cost

iter.
n-1
 ctrl

optimization

optimization

• In practice, one run often performs both
forward and adjoint modes.

• The optimization calculates updated control
adjustments, obtained through a line search
that identifies a direction and step size.

Tutorials for Running ECCO Adjoint
https://ecco-summer-school.github.io/ecco-2025/tutorials/pcluster/ecco_adj.html

A line search identifies a direction along which the weighted
squared sum of mode-data difference (J) can be reduced and
then calculates a step size by a specific amount to the controls,
in order to to reduce J.

Two linear search methods:
• Steepest descent: a first-derivative method that utilizes the

gradient as the search direction

• Quasi-Newton method that uses the second-derivative
(curvature) information often achieves faster J reduction.
ECCO V4 uses one of Quasi-Newton methods: Limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-
BFGS).

Flowchart diagram for the
iterative optimization process

What is the optimization step?

From current &
previous iterations

N, N-1, N-2…

During optimization step …

Costs

Control adjustments

Adjoint gradients

Optimization
Executable

Iteration N

Control adjustments

Practical Steps
• Follow the same steps as the forward simulation to obtain the code, input

files, etc.

• Compilation is similar to that for the forward simulation, but with a few
important differences — including sending the Fortran code to TAF to
generate the adjoint code.

• Obtain more scripts that are needed for conducting a few iterations.

cd WORKINGDIR

cp -r "ECCO-v4-Configurations/ECCOv4 Release
4/scripts/" ECCOV4/release4/

┌── WORKINGDIR
│ ├── ECCO-v4-Configurations
│ ├── ECCOV4
│ │ └── release4
│ │ ├── code
│ │ ├── namelist
│ │ ├── build
│ │ ├── run
│ │ └── scripts
│ └── MITgcm
└── input

Directory
structure
afterwards

Obtain Optimization Code

Assume current directory is /efs_ecco/USERNAME/r4/

cd WORKINGDIR
cp -r "ECCO-v4-Configurations/ECCOv4 Release 4/optimization/lsopt/" ECCOV4/release4/
cp -r "ECCO-v4-Configurations/ECCOv4 Release 4/optimization/optim/" ECCOV4/release4/

┌── WORKINGDIR
│ ├── ECCO-v4-Configurations
│ ├── ECCOV4
│ │ └── release4
│ │ ├── code
│ │ ├── namelist
│ │ ├── build
│ │ ├── run
│ │ ├── scripts
│ │ ├── lsopt
│ │ └── optim
│ └── MITgcm
└── input

Directory structure with the
two new directories are
highlighted in red

Compile Optimization Code

cd WORKINGDIR/ECCOV4/release4
cd lsopt
make clean
make
cd ../optim
make clean
make
cd ..

• The executable would be optim.x in WORKINGDIR/ECCOV4/release4/optim/.
• It will be used for linear search during the optimization step.

https://github.com/ECCO-GROUP/ECCO-v4-Configurations/tree/master/ECCOv4%20Release%204

Compilation for adjoint run
Compile to generate the executable
For simplicity, assume current directory is /efs_ecco/USERNAME/r4/
• Create a build_ad directory to differentiate it from the build directory used for the forward

simulation.
• Generate the adjoint code by sending the Fortran code to TAF — this is done in the step make -

j16 adtaf.
• Generate the executable by make –j16 adall; the executable will be build_ad/mitgcm_uv

cd WORKINGDIR/ECCOV4/release4
mkdir build_ad
cd build_ad
export ROOTDIR=../../../MITgcm
../../../MITgcm/tools/genmake2 -mods=../code -optfile=../code/linux_ifort_impi_aws_sysmodule -mpi
make depend
make adtaf
make adall
cd ..

make adtaf: send code to FastOpt for TAF to
generate the adjoint code
• Makefile defines how to prepare the code (not all subroutines need to be

sent to TAF) and provides instructions for sending it to TAF

• ad_input_code.f: packaged code sent to TAF

• ad_input_code_ad.f: adjoint code returned by TAF

• ad_taf_output.f: Same as ad_input_code_ad.f but with some small changes

staf -server fastopt.net -f77 -reverse -i4 -r4 -intrinsic system,flush -l taf_ad.log -toplevel 'the_main_loop' -input
'xx_theta_dummy … xx_genarr2d_dummy,xx_genarr3d_dummy,xx_gentim2d_dummy,… xx_vwind_mean_dummy' -output
'fc' ad_input_code.f

 Transformation of Algorithms in Fortran (TAF)
 Copyright 2000-2019 FastOpt GmbH, Hamburg, Germany
 All rights reserved.
 URL: http://www.FastOpt.de, Email: info@FastOpt.de
 script to access TAF remotely version 5.2

 Processing files at fastopt.net, please wait.

 Transformation of Algorithms in Fortran (TAF) Version 6.8.2
 Copyright 2000-2025 FastOpt GmbH, Hamburg, Germany
 All rights reserved.
 URL: http://www.FastOpt.de, Email: info@FastOpt.de

 TAF needed 2.43910E+02 seconds

ls -l ad_input_code_ad.f
-rw-r--r-- 1 owang owang 11902820 May 21 05:37 ad_input_code_ad.f
cat ad_input_code_ad.f | sed -f ../../../MITgcm/tools/adjoint_sed > ad_taf_output.f

make adtaf: sample on-screen messages are as follows

xx_gentim2d_dummy: control

'fc’:cost function (J)

reverse: tell TAF to generate adjoint code

'the_main_loop’: routine to be processed

• S/Rs too complicated for TAF; human intervention is necessary!

make adall: use ad_taf_output.f and other subroutines that
were not sent to TAF for translation to generate the
executable:
mitgcmuv_ad

Example subroutines (S/R) not “TAFed”:

• S/Rs to output diagnostics
• S/Rs that are equivalent of an operation by a symmetric matrix (a

transpose of a symmetric matrix is itself)

Code snippet to illustrate forward code and TAF-generated adjoint
code

do k = ksize, 1, -1
 do j = 1-oly, sny+oly
 do i = 1-olx, snx+olx

ab_gtr_ad(i,j) = ab_gtr_ad(i,j)+gtrnm_ad(i,j,k,bi,bj,m2)
gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+gtrnm_ad(i,j,k,bi,bj,m2)
gtrnm_ad(i,j,k,bi,bj,m2) = 0.d0

 gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ab_gtr_ad(i,j)*ab0
 gtrnm_ad(i,j,k,bi,bj,m1) = gtrnm_ad(i,j,k,bi,bj,m1)+
 $ab_gtr_ad(i,j)*ab1
 gtrnm_ad(i,j,k,bi,bj,m2) = gtrnm_ad(i,j,k,bi,bj,m2)+
 $ab_gtr_ad(i,j)*ab2
 ab_gtr_ad(i,j) = 0.d0
 end do
 end do
 end do

do k = 1, ksize
 do j = 1-oly, sny+oly
 do i = 1-olx, snx+olx
 ab_gtr(i,j) = ab0*gtracer(i,j,k)+ab1*gtrnm(i,j,k,bi,bj,m1)
 $+ab2*gtrnm(i,j,k,bi,bj,m2)

gtrnm(i,j,k,bi,bj,m2) = gtracer(i,j,k)+ab_gtr(i,j)
 end do
 end do
 end do

Rewrite forward code:
gtrnm(i,j,k,bi,bj,m2) = gtracer(i,j,k)+ab_gtr(i,j)

To:
gtrnm(i,j,k,bi,bj,m2) = 0.d0
gtrnm(i,j,k,bi,bj,m2) = gtrnm(i,j,k,bi,bj,m2)+gtracer(i,j,k)
gtrnm(i,j,k,bi,bj,m2) = gtrnm(i,j,k,bi,bj,m2)+ab_gtr(i,j)

Original MITgcm Code (Forward) TAF-generated adjoint code

An example to help explain the TAF translation

TAF Store directives: An example

DO k=Nr,2,-1
CADJ STORE salt (:,:,k-1,bi,bj) = comlev1_bibj_k,
CADJ & key=kkey, kind = isbyte
 CALL FIND_RHO_2D(
 I iMin, iMax, jMin, jMax, k,
 I theta(1-OLx,1-OLy,k-1,bi,bj),
 I salt (1-OLx,1-OLy,k-1,bi,bj),
 O rhoKm1,
 I k-1, bi, bj, myThid)
 ENDDO

DO k=2, Nr
 do ip2 = 1-oly, sny+oly
 do ip1 = 1-olx, snx+olx

salt(ip1,ip2,k-1,bi,bj) = comlev1_bibj_k_salt_109h(
$ip1,ip2,kkey)

 end do
 end do
 call find_rho_2d_ad(imin,imax,jmin,jmax,k,theta(1-olx,
 $1-oly,k-1,bi,bj),theta_ad(1-olx,1-oly,k-1,bi,bj),salt(1-olx,1-oly,
 $k-1,bi,bj),salt_ad(1-olx,1-oly,k-1,bi,bj),rhokm1_ad,bi,bj)
 ENDDO

DO k=Nr,2,-1
 do ip2 = 1-oly, sny+oly
 do ip1 = 1-olx, snx+olx

comlev1_bibj_k_salt_109h(ip1,ip2,kkey) = salt(ip1,
$ip2,k-1,bi,bj)

 end do
 end do
 call find_rho_2d(imin,imax,jmin,jmax,k,theta(1-olx,1-
 $oly,k-1,bi,bj),salt(1-olx,1-oly,k-1,bi,bj),rhokm1,help_l,bi,bj,
 $mythid)
 ENDDO

Original MITgcm Code (Forward) TAF-translated Code (Forward)

TAF-translated Code (Adjoint)• TAF store directives inserted because salt gets
overwritten during time stepping.

• TAF translates the store directive to Fortran
code:

comlev1_bibj_k_salt_109h(ip1,ip2,kkey) =
salt(ip1,ip2,k-1,bi,bj)

• Somewhere later (not shown),
comlev1_bibj_k_salt_109h gets written to
disk.

• The adjoint code loads it back from disk and
assign salt to it.

Conduct three iterations from cold start with a
simple cost (all control adjustments start from 0)

cd WORKINGDIR/ECCOV4/release4
cp -p /efs_ecco/ECCO/V4/r4/scripts/run_script_slurm_autoopt_coldstart_v4r4.bash .
sbatch run_script_slurm_autoopt_coldstart_v4r4.bash

Directory name Description

v4r4_coldstart.iter0 run directory for iteration 0

v4r4_coldstart.iter1 run directory for iteration 1

v4r4_coldstart.iter2 run directory for iteration 2

ctrlvec.v4r4_coldstart files for control adjustments (generated by optimization) and adjoint
gradients (generated by each iteration and copied over)

optim.v4r4_coldstart Where the optimization is conducted, using input files loaded from
ctrlvec.v4r4_coldstart and output the new control adjustments for the
next iteration to ctrlvec.v4r4_coldstart.

Information of previous iterations is saved in OPWARMD & OPWARMI.

• A fractional cost reduction target specified (0.4%)The script figures out the
actual target cost value

• ecco_cost (adjoint gradients in packed format) generated (and also ecco_ctrl
(control adjustments for iteration 0) at the end of each iteration;

Examples:
• ecco_cost_MIT_CE_000.opt0000 and ecco_ctrl_MIT_CE_000.opt0000
• Unpacked control files xx.*.data,
• Unpacked adjoint gradients: adxx.*.data

• The ecco_cost and ecco_ctrl files from previous iterations are used as inputs for
the optimization to generate new control adjustments for the next iteration,
such as ecco_ctrl_MIT_CE_000.opt0001

• The new control adjustments are used as part of the input for the next iteration,
and the iterative process continues

A few more details:

Results: Cost vs. Iteration

Steepest descent

Quasi-Newton

• For steepest descent, we specify a cost reduction target of 0.004. The actual cost reduction from
iterations 0 to 1 is also 0.004, matching the specified cost reduction target.

Iteration Number Cost Cost Ratio w.r.t. Iteraion0

0 2079042.47585259 1

1 2070774.52785874 0.996

2 1284971.72606061 0.618

Cost values in the table above are the fc values in the cost function file in each run directory, e.g.,
v4r4_coldstart.iter0/costfunction0000 (see first few lines below):

 fc = 2079042.47585259 0.0000000E+00
siv4-conc (gencost 1) = 0.787294673837671D+05 0.130851000000000D+06
siv4-deconc (gencost 2) = 0.124716306787977D+05 0.236400000000000D+04
siv4-exconc (gencost 3) = 0.335788181304271D+04 0.557200000000000D+04
…

Cost vs. Iterations
• Iteration 8 cost is 30%

of iteration 0
• Small cost reduction

from iteration 0 to 1 is
consistent with
specified cost
reduction target

• Large cost reduction
from iteration 1 to 2,
when line search was
switched from
steepest descent to
Quasi-Newton

Thank you!

Questions:
ecco-support@mit.edu
(please subscribe via
http://mailman.mit.edu/mailman/listinfo/ecco-support)

