(Q_'»A Jet Propulsion Laboratory
By California Institute of Technology

Running the ECCO Model and Adjoint

Ou Wang, lan Fenty, and Ichiro Fukumori

Jet Propulsion Laboratory, California Institute of Technology

ECCO Summer School 2025 Pacific Grove, California May 19-30, 2025

© 2025 All rights reserved

Estimating the Circulation & Climate of the Ocean (ECCO) ocean state estimates:
Synthesis of global ocean data with MITgcm using an adjoint-based inverse estimation method

GRACE, GRACE-FO

Argo
5! Profiling
Floats

TOPEX-POSEIDON

JASON I ' ‘ ..
.
JASON 2 ’ -

JASON 3

Marine
mammals

SARAL/AltiKa

Instrumented
moorings

S IRIRRRRE

Aquarius/SAC-D
Ice-tethered

B(s*8) DB iwyes)
e + = profilers

=5"(Fo+ Daa+Dip).
3(s*8) A Swre)
a + V(5" Svres) + 9

=35"(Fs+ Dos+ DLs).

AVHRR

MIT general circulation model

ECCO Ocean State Estimates: Synthesis of global ocean and sea-ice
observations with MITgcm using an adjoint-based inverse estimation
method

Key Components

e Observations to constrain the model along with their uncertainties

* Model (MITgcm)
e Grid
e Bathymetry
» Surface forcing and other (e.g., geothermal forcing, ice-shelf melt)
* Mixing coefficients
* Uncertainty for control

» Algorithmic Differentiation Tools (e.g., TAF, Tapenade) to generate adjoint code

ECCO Version 4

Version 4 Release 5 (V4r5, latest release) and

Version 4 Release 4 (V4r4)

Multi-decadal global ocean and sea-ice state
estimate; observation constrained for 1992-2019

1992-2019 mean surface current speed (cm/s)

30

25

20

15

10

(V4r5) and simulation only for 2020-present
e Constrained by satellite altimetry, GRACE, Aquarius,
AVHRR, ARGO, CTD, XBT, satellite sea-ice

measurements (concentration, freeboard)...;

* Including ice-shelves and ice-fronts around
Antarctic;

* Adjusting atmospheric forcing, mixing parameters,
initial conditions, and ice-shelf heat transfer °
coefficient (only for V4r5) (controls); _

« Model: non-linear free surface boundary and real | V¥ oy —losian)

freshwater boundary Conditions. ©7 1992 1996 2000 2004 2008 2012 2016 2020
’
* A physically consistent solution.

ECCO V4
Model Grid: Lat-Lon-Cap90 (LLC90)

= ‘g‘:'“":k Y Ye _ L e i
E's
'y

50 100 150 200 250

50 100 150 200 250

)
20 40 60 80 20 40 60 80 X o
Horizontal resolution 22km to 111km
Vertical resolution 10m to 457m from surface to bottom @ 6145m

Forget et al. (2015)

An iterative process to obtain optimized
controls

O

optlmlzatlon

A
5
lg?\
optimization
The final solution—e.g., ECCO V4r5—is a
m forward simulation forced with optimized
< ocean surface forcing, mixing parameters,

and initial conditions.

Reproducing ECCO V4 (Forward Simulation)

* Why to reproduce ECCO V4

» Generate different model outputs
o Sampling frequency from monthly to weekly
o Output other model fields

* Forward sensitivity experiments using different forcing, mixing, etc.
o Climatological forcing
o Increased/reduced mixing parameters

e Steps to Conduct Forward Run
* Download the Model Code
= Obtain Input Files
" Compile the Code
= Submit the Forward Run Script

Bathymetry,
mixing Observations

parameters

Grid
MITgcm code information

. Initial _
Input files conditions Namelists Controls

Forcing Weights Others

qa ‘ _

uone|idwo)

Tutorial for Reproducing ECCO V4r4

Part of Summer School Tutorials

https://ecco-summer-school.github.io/ecco-2025/tutorials/pcluster/reproducing_v4r4.html

Checklist
Setting up your SSH keys

Intro to Open Science Studio and
JupyterHub

Set up ' git access

Set up OSS with your summer

school repository

Set up NASA Earthdata
credentials

Getting Started with the P-Cluster
Configure TAF on the P-Cluster

Guidelines to Set Up Julia

Tutorials

ECCO general information
ECCO data access
ECCO v4 computations
Julia Tutorials

als

P-Cluster Library and Job

Management
Run MPI Hello World Examples

Conducting MITgem Verification

Experiments

Reproducing ECCO Version 4

Reproducing ECCO Version 4 Release 4
(Forward Simulation)

ECCO Version 4 Release 4 (V4r4) is ECCO's latest publicly available central estimate (see its data repository
on PO.DAAC, which has been used in numerous studies (e.g., Wu et al. (2020)). ECCO V4r4 is a forward
simulation with optimized controls that have been adjusted through an iterative adjoint-based optimization
process to minimize the model-data misfit. Wang et al. (2023) provides detailed instructions on how to
reproduce the ECCO V4r4 estimate. In this tutorial, we follow those instructions with some modifications
tailored for the P-Cluster and reproduce the ECCO V4r4 estimate.

Log in to P-Cluster

Users first connect to the P-Cluster and change the directory to the user’s directory on /efs_ecco, as
described in the P-Cluster introduction tutorial:

ssh -i /path/to/privatekey -X USERNAME@34.210.1.198

The directory | /efs_ecco/USERNAME/ (replace USERNAME with the user’s actual username) is where the run
should be conducted. Users can change to that directory with the following command:

cd /efs_ecco/USERNAME/

Modules

Using MITgcm version checkpoint66g
and V4r4-specifc code
Run with 96 CPUs (For 1Ic90 grid, the
globe can be splitinto 117 30x30 tiles;
21 tiles are over land and therefore
skipped).
Tailored for the P-Cluster
o Suitable modules (e.g., compilers)
have been configured
o Input files have been pre-
downloaded to the P-Cluster
A general reproduction document for
ECCO V4 is available on Zenodo (DOI:
10.5281/zen0do0.7789915), , including
instructions for downloading the input
files.

https://github.com/MITgcm/MITgcm.git
https://github.com/ECCO-GROUP/ECCO-v4-Configurations/tree/master/ECCOv4%20Release%204
https://doi.org/10.5281/zenodo.7789915

Tutorial for Reproducing ECCO V4

Part of Summer School Tutorials

https://ecco-summer-school.github.io/ecco-2025/tutorials/pcluster/reproducing_v4r5.html

Checklist

Setting up your SSH keys

Intro to Open Science Studio and
JupyterHub

Set up |git access

Set up OSS with your summer
school repository

Set up NASA Earthdata
credentials

Getting Started with the P-Cluster
Configure TAF on the P-Cluster

Guidelines to Set Up Julia

Tutorials

ECCO general information
ECCO data access
ECCO v4 computations

Julia Tutorials

P-Cluster Library and Job
Management

Run MPI Hello World Examples

Conducting MITgem Verification

Experiments

Reproducing ECCO Version 4

Release 4 (Forward Simulation)

= fO0LI10 * Essentially the same procedure as

Reproducing ECCO Version 4 Release 5
(Forward Simulation)

ECCO Version 4 Release 5 (V4r5) is ECCO's next central estimate after V4r4. Reproducing ECCO VA4r5 is
essentially the same as reproducing ECCO V4r4, as described in
Like ECCO Vd4r4, ECCO V4r5 is a forward simulation with optimized controls that have been adjusted

through an iterative adjoint-based optimization process to minimize the model-data misfit.

Compared to V4rd, ECCO V4r5 extends the model integration period from 1992-2017 to 1992-2019. It also
includes ice sheets around Antarctica. Meltwater from these ice sheets is an important component of both

regional and global sea level change. Including this melt introduces an important physical process that was
missing in Vr4.

In this tutorial, we provide instructions on how to reproduce the ECCO V4r5 estimate on the P-Cluster.

Log in to P-Cluster

Users first connect to the P-Cluster and change the directory to the user’s directory on fefs_ecco, as

described in the

ssh -i /path/to/privatekey —-X USERNAME@34.210.1.198

The directory /efs_ecco/USERNAME/ (replace |USERNAME | with the user’s actual username) is where the run
should be conducted. Users can change to that directory with the following command:

cd /efs_ecco/USERNAME/

reproducing ECCO V4r4

Using MITgcm version checkpoint68g
and V4r5-specifc code

Run with 113 CPUs; more CPUs are used
than in V4r4d because V4r5 includes ice
sheets around Antarctica, which
introduce more wet tiles.

Code and input files are all available on
the P-Cluster

https://github.com/MITgcm/MITgcm.git
https://github.com/ECCO-GROUP/ECCO-v4-Configurations/tree/master/ECCOv4%20Release%205

Steps to Reproduce ECCO V4

(All commands are available in the reproduction tutorials)

Log in to the P-Cluster

ssh -i /path/to/privatekey -X USERNAME@34.210.1.198
cd /efs_ecco/USERNAME

Modules

Necessary modules should be automatically loaded. If not, modify your shell configuration file,
such as .bashrc, following the instruction described in the tutorial of Getting Started with the P-
Cluster

https://ecco-summer-school.github.io/ecco-2025/preliminary/pcluster-login.html
https://ecco-summer-school.github.io/ecco-2025/preliminary/pcluster-login.html

Steps to Reproduce ECCO V4 (continued)

Get the MITgcm model and V4 specific code and namelist files

 The code and namelist files have been downloaded to the P-Cluster.
Users can copy them directly to their preferred local directory (see
below; replace USERNAME with the user’s own username.)

* They are also available on GitHub; see the tutorial for details.

 The namelist files contain run-time parameters.

rsync -av /efs_ecco/ECCO/V4/r4/WORKINGDIR /efs_ecco/USERNAME/r4/

Current directory structure of /efs_ecco/USERNAME/r4/:

WORKINGDIR

~— ECCO-v4-Configurations
-— ECCOV4

| L—released

| |— code

| L— namelist
L— MITgcm

Steps to Reproduce ECCO V4 (continued)

Input files for atmospheric forcing, initial conditions, and others

* Have also been pre-downloaded into the P-Cluster

* Total data volume is a few hundreds Gigabytes

* No need to copy them to the user’s working directory. The run script
will use a symbolic link to access the files.

cd /efs_ecco/USERNAME/r4/
In -s /efs_ecco/ECCO/V4/r4/input .

Current directory structure of /efs_ecco/USERNAME/r4/:

— WORKINGDIR

| |— ECCO-v4-Configurations
-— ECCOV4

| L—released

| |— code

| L— namelist
L— MITgecm

L— input

Steps to Reproduce ECCO V4 (continued)

Compile to generate the executable
For simplicity, assume current directory is /efs_ecco/USERNAME/r4/

cd WORKINGDIR/ECCOV4/release4

mkdir build & Create a build directory
cd build
export ROOTDIR=../../../MITgcm 4mmm Create an environment variable that will be used by MITgem

../..[../MITgcm/tools/genmake2 -mods=../code -optfile=../code/linux_ifort_impi_aws_sysmodule -mpi
make depend

make all

cd ..

./..[../MITgcm/tools/genmake2 -mods=../code -optfile=../code/linux_ifort_impi_aws_sysmodule -mpi
 Generate a Makefile to be used by make (a build automation tool that generates executable)
* Thefile linux_ifort_impi_aws_sysmodule, which specifies compilation flags, libraries, etc. is tailored
for the P-Cluster.
 The -mpi option indicates that the code will be compiled as an MPI job to run in parallel using
multiple processors.

What does Makefile look like?

ROOTDIR .J. /. /MITgem
BUILDDIR =.
SOURCEDIRS = ../code $(ROOTDIR)/pkg/...

EXEDIR =.

EXECUTABLE = S(EXEDIR)/mitgcmuv
TOOLSDIR = $(ROOTDIR)/tools
OADTOOLS =

ENABLED_PACKAGES = -DALLOW_CAL -DALLOW_COST...
DISABLED_PACKAGES = -UALLOW_ADMTLM -UALLOW_AIM_V23...

Fortran compiler
FC = mpiifort

Fortran compiler
FOOC =

C compiler

CC = mpiicc

Steps to Reproduce ECCO V4 (continued)

* make depend: determines code decencies: head files included
* make all: generates the executable (named mitgcmuv in build/)

After compilation, directory structure of /efs_ecco/USERNAME/r4/ is as follows:

— WORKINGDIR

~— ECCO-v4-Configurations
-— ECCOV4

| L—release4d

| -— code

| -— namelist
|

L— build eesessss———— mitgcmuv in build

L— input

Steps to Reproduce ECCO V4 (continued)

Run

An example run script is provided in /efs_ecco/ECCO/V4/r4/scripts
The P-Cluster uses Slurm as its batch job scheduler
The example script conducts a three-month model integration from January 1, 1992, to
March 31, 1992. The script can be modified to perform 26-year (1992-2017) runs over
the full ECCO V4r4 model integration period
sbatch submits a batch job to Slurm, based on the job configuration specified in the
script. The job script requests 3 nodes, with each node running 36 tasks.
Once submitted, Slurm will display a message with the job ID, such as

Submitted batch job 1181
Users can monitor the job status by issuing the command squeue

cd WORKINGDIR/ECCOV4/release4
cp -p /efs_ecco/ECCO/V4/r4/scripts/run_script_slurm.bash .
sbatch run_script_slurm.bash

Example run script
/efs_ecco/ECCO/V4/r4/scripts/run_script_slurm.bash

#!/bin/bash

H#SBATCH -J ECCOv4r4 < Job name

#SBATCH --nodes=3 <+— 3 nodes

#SBATCH --ntasks-per-node=36 <+— 36 tasks per node

H#SBATCH --time=24:00:00 <+— Requesting 24-hour wall time

#SBATCH --exclusive <— QOther users cannot use idle CPUs in the 3 nodes

#SBATCH --partition=sealevel-c5n18xI|-demand <«— Partition (i.e., queue) name

#SBATCH --mem-per-cpu=1GB <«— Each CPU has 1GB memory.

#SBATCH -0 ECCOv4r4-%j-out <+— Standard output file is ECCOv4r4-NNN-out, where NNN is the job ID.
#SBATCH -e ECCOv4r4-%j-out < Standard error file is set to be the same as the Standard output file.

Initialize and set up the environment. <= Set up environment
umask 022

ulimit -s unlimited

source /etc/profile

source /shared/spack/share/spack/setup-env.sh

source /usr/share/modules/init/sh

Example run script (continued)
/efs_ecco/ECCO/V4/r4/scripts/run_script_slurm.bash

Load modules <+— Load modules

module purge

module load intel-oneapi-compilers-2021.2.0-gcc-11.1.0-adt4bgf
module load intel-oneapi-mpi-2021.2.0-gcc-11.1.0-ibxno3u
module load netcdf-c-4.8.1-gcc-11.1.0-6s076nc

module load netcdf-fortran-4.5.3-gcc-11.1.0-d35hzyr

module load hdf5-1.10.7-gcc-9.4.0-vif4ht3

module list

Set environment variables <+— Set up more environment variables
export FORT_BUFFERED=1

export MPI_BUFS_PER_PROC=128

export MPI_DISPLAY_ SETTINGS=""

Example run script (continued)
/efs_ecco/ECCO/V4/r4/scripts/run_script_slurm.bash

Create run directory .
mkdir -p "${basedir}/run" <— (Create run directory

cd "S{basedir}/run" || exit # Change directory and exit if it fails <= Change into it

Link input files
In -s ../namelist/* .
In -s S{inputdir}/input_init/* .

In -s S{inputdir}/input_forcing/control_weights/* .
In -s S{inputdir}/native_grid_files/tile*.mitgrid .

Modify some namelist files, e.g., change the number of time steps to 3-mont
unlink data

cp -p ../namelist/data .

sed -i '/#nTimeSteps=2160,/ s/ //; /nTimeSteps=227903,/ s/ /#/' data

Run the mitgcmuv executable with MPI using the specified number of processes
mpirun -np "S{nprocs}" ./mitgcmuv

Steps to Reproduce ECCO V4 (continued)

After the run starts, directory structure of /efs_ecco/USERNAME/r4/ is as follows:

— WORKINGDIR
| |— ECCO-v4-Configurations
| |— ECCOV4

| | L—released

| | -— code
|
|
|

|

~— namelist

~— build
| L— run

L— MITgcm

* Use squeue to check the job status.
* After the job completes, check whether it ended normally.
= Yes, if the last line of run/STDOUT.0000 is
PROGRAM MAIN: Execution ended Normally
= Otherwise, the job does not end normally.

Results
WORKINGDIR/run

Expected files

STDOUT.XXXX model configuration, monitored statistics
of model state variables

STDERR.XXXX any warnings

diags/*.{data,meta} outputs of the model state in binary
format

m_*.{data,meta}, misfit*.{data,meta}, ... outputs from pkg/ecco for cost
calculation

XX* control adjustments

Successful if the last line of STDOUT.0000 is:
PROGRAM MAIN: Execution ended Normally

Flowchart for Conducting the Run

STDOUT.XXXX,
- . STDERR.XXXX,
Run script Submit diags/*.{data, meta}
etc.

No

-

Check STDOUT.XXXX,

STDERR.XXXX for more info.

' Yes

Namelist (runtime parameters)

data Core runtime parameters

data.cal Specify model start time

data.pkg Individual package switch

data.diagnostic Diagnostics variables and output frequencies
data.exf Forcing files and formats

data.profiles In situ files

data.ecco Cost terms

data.gmredi GM-Redi parameters

data.seaice Sea-ice parameters

data.ctrl Control variables, weights

data.exch2 Tile exchange and blank tile parameters

Example modifications to namelist files
S

data nTimeSteps=227903,

Change the value (# of time steps) changes the model integration
period. For example, the model runs for 3 months with:
nTimeSteps=2160,

data.diagnostic frequency(91) = 2635200.0,
fields(1,91) = 'SSH',
filename(91) = 'diags/SSH_mon_mean/SSH_mon_mean’',

The above outputs monthly-mean SSH with frequency specifies
averaging period (in seconds). The following changes the namelists
above to output weekly-mean OBP:

frequency(91) = 604800.0,

fields(1,91) = ‘OBP/,

filename(91) = 'diags/OBP_week_mean/OBP_week_mean’,

data.exf atempfile ='eccov4rd_tmp2m_degC,

The above specifies the air temperature forcing. Change it to some
modified forcing:
atempfile ="'eccovl4rd_tmp2m_degC_modified’,

Things to know to run it on another computer

* Have necessary modules installed

* Fortran compiler
* MPI
* netCDF

* Compilation option file
* linux_ifort_impi_aws_sysmodule may not work

e Start from one from the list in MITgcm/tools/build _options/. Pick up one

having the same operating system, machine name and compiler in the
filename as yours.

* Run out memory?
* Request more CPUs than the number of tiles

How to run adjoint and conduct
optimization?

m Forward

optlmlzatlon

A
o
fé?\
a I ECCO V4

®< '

* In practice, one run often performs both
forward and adjoint modes.

* The optimization calculates updated control
adjustments, obtained through a line search
that identifies a direction and step size.

Running ECCO Adjoint and Optimiz: X +

O B https://ecco-summer-school.github.io/ecc

ECCO data access
ECCO v4 computations
Julia Tutorials
P-Cluster Tutorials

P-Cluster Library and Job
Management

Run MPI Hello World Examples

Conducting MITgcm Verification

Experiments

Reproducing ECCO Version 4

Release 4 (Forward Simulation)

Reproducing ECCO Version 4
Release 5 (Forward Simulation)

Running ECCO Adjoint and

Optimization
EMU
Using git for version control
Algorithmic Differentiation (AD)
MITgem Assimilation

SWOT

Projects

Projects

Reference
Glossaries
Bibliography

How to Get Help

Tutorials for Running ECCO Adjoint

o_adj.html

= ¥0%II0

Running ECCO Adjoint and Optimization

ECCO Ocean State Estimation uses an iterative optimization process to adjust control variables—including
ocean surface forcing, mixing parameters, and initial conditions—to minimize the weighted sum of model-
data misfits, called the cost function (J), in a least-squares sense. This iterative process involves tens of
iterations. Each iteration includes one forward run to compute the model-data misfit (J), one adjoint run to
compute the adjoint gradients (i.e., the sensitivity of J to the controls), and an optimization step that uses
these gradients to estimate updated control adjustments. The typical steps for conducting multiple
iterations, starting from initial control variables (called first-guess controls), are as follows:

. Execute the forward model using a set of first-guess model control variables to compute the model-
data misfits and the initial value of the cost function, J.

. Run the adjoint model, forced by the model-data misfits from the forward simulation as inputs. Upon
completion, the adjoint gradients of J with respect to the control variables are computed. These adjoint
gradients will be used in step 3 to compute updated control adjustments.

. Compute control adjustments, called optimization, by utilizing the adjoint gradients and J fromm
steps 1 and 2 to compute a set of adjustments to the control variables using the method of steepest
descent.

. Execute the forward model again using the updated control variables—i.e., the sum of the first-guess
values (or those from the previous iteration) and the adjustments computed in step 3—and compute the
new value of J.

This step is equivalent to step 1, except the control variables are no longer the first guess.

. Run the adjoint model (repeating step 2) to run the adjoint model and compute a new set of adjoint
gradients.

. Update control adjustments, another optimization step by applying the adjoint gradients, updated
control variables, and J from the previous two or more iterations (up to 4 iterations to limit memory
usage when producing ECCO V4 estimates) to calculate a new set of control adjustments using a
quasi-Newton method, such as Limited-memory Broyden—Fletcher-Goldfarb-Shanno algorithm (L-
BFGS). Except for using the L-BFGS method, step 6 is essentially the same as step 3.

https://ecco-summer-school.github.io/ecco-2025/tutorials/pcluster/ecco _adj.html

B mno% Y

i= Contents

Log in to P-Cluster
Modules
Code, Namelists, Input Files, and
Scripts
Code, Namelists, Input Files
Scripts and Optimization Code
Directory Structure
Compile
Compile Code for Adjoint Runs
Compile Optimization Code
Conduct Iterations
Overview of the Iteration Workflow
Walkthrough of the Example Run
Script
Setup Slurm directivies:

Configure Shell Environment,
Load modules, and Setup

Environment Variables
Set Up Run-Specific Variables
Setup Optimization
Loop Through Iterations
Switches for Skipping
Optimization
Optimization Step
Conduct Adjoint Run

Post Run Processing

Flowchart diagram for the
iterative optimization process

What is the optimization step?

A line search identifies a direction along which the weighted
squared sum of mode-data difference (J) can be reduced and
then calculates a step size by a specific amount to the controls,
in order to to reduce J.

optimiza
tion or
not

Two linear search methods: l' Yes
* Steepest descent: a first-derivative method that utilizes the
gradient as the search direction optimization

* Quasi-Newton method that uses the second-derivative
(curvature) information often achieves faster J reduction.
ECCO V4 uses one of Quasi-Newton methods: Limited-
memory Broyden—Fletcher—Goldfarb—Shanno algorithm (L-
BFGS).

forward and adjoint run

. 4

iteration # + 1

During optimization step ...

From current &
previous iterations
N, N-1, N-2...

lteration N

4)

Optimization
Control adjustments Executable

- J

Adjoint gradients

Practical Steps

* Follow the same steps as the forward simulation to obtain the code, input
files, etc.

* Compilation is similar to that for the forward simulation, but with a few
important differences — including sending the Fortran code to TAF to
generate the adjoint code.

* Obtain more scripts that are needed for conducting a few iterations.

— WORKINGDIR

Directory | |— ECCO-v4-Configurations

cd WORKINGDIR structure | F—ECCOV4
cp -r "ECCO-v4-Configurations/ECCOv4 Release afterwards | | L—release4
4/scripts/" ECCOV4/released/ ‘ | | —— code

| | -— namelist

| | F—build

| | ~— run

| | L— scripts

| L— MiITgem

L— input

Obtain Optimization Code

Assume current directory is /efs_ecco/USERNAME/r4/

cd WORKINGDIR
cp -r "ECCO-v4-Configurations/ECCOv4 Release 4/optimization/Isopt/" ECCOV4/release4/
cp -r "ECCO-v4-Configurations/ECCOv4 Release 4/optimization/optim/" ECCOV4/release4/

— WORKINGDIR

| |— ECCO-v4-Configurations
| —Eccov4

| L—released

| ~— code

| ~— namelist
| ~— build

| ~—run
|

|

|

Directory structure with the

two new directories are ‘
highlighted in red

~— scripts
— |sopt
L— optim

|_
=
]
3

Compile Optimization Code

cd WORKINGDIR/ECCOV4/release4d
cd lsopt

make clean

make

cd ../optim

make clean

make
cd ..

* The executable would be optim.x in WORKINGDIR/ECCOV4/release4/optim/.
* It will be used for linear search during the optimization step.

https://github.com/ECCO-GROUP/ECCO-v4-Configurations/tree/master/ECCOv4%20Release%204

Compilation for adjoint run

Compile to generate the executable

For simplicity, assume current directory is /efs_ecco/USERNAME/r4/

* Create a build_ad directory to differentiate it from the build directory used for the forward
simulation.

* Generate the adjoint code by sending the Fortran code to TAF — this is done in the step make -
j16 adtaf.

* Generate the executable by make —j16 adall; the executable will be build_ad/mitgcm_uv

cd WORKINGDIR/ECCOV4/release4d

mkdir build_ad

cd build_ad

export ROOTDIR=../../../MITgcm

./../../MITgcm/tools/genmake2 -mods=../code -optfile=../code/linux_ifort_impi_aws_sysmodule -mpi
make depend

make adtaf

make adall
cd ..

make adtaf: send code to FastOpt for TAF to
generate the adjoint code

* Makefile defines how to prepare the code (not all subroutines need to be
sent to TAF) and provides instructions for sending it to TAF

e ad_input_code.f: packaged code sent to TAF
e ad_input_code ad.f: adjoint code returned by TAF
e ad_taf output.f: Same as ad_input_code_ad.f but with some small changes

make adtaf: sample on-screen messages are as follows

-input

staf -server fastopt.net -f77 - -i4 -rd -intrinsic system,flush -l taf ad.log
'xx_theta_dummy ... ,_, ... XX_vwind_mean_dummy' -output

. ad_input_code.f

Transformation of Algorithms in Fortran (TAF)
Copyright 2000-2019 FastOpt GmbH, Hamburg, Germany
All rights reserved.

URL: http://www.FastOpt.de, Email: info@FastOpt.de
script to access TAF remotely version 5.2

Processing files at fastopt.net, please wait.

Transformation of Algorithms in Fortran (TAF) Version 6.8.2
Copyright 2000-2025 FastOpt GmbH, Hamburg, Germany
All rights reserved.

URL: http://www.FastOpt.de, Email: info@FastOpt.de
TAF needed 2.43910E+02 seconds

Is -l ad_input_code_ad.f
-rw-r--r-- 1 owang owang 11902820 May 21 05:37 ad_input_code_ad.f

xx_gentim2d_dummy:control

.:cost function (J)

cat ad_input_code_ad.f | sed -f ../../../MITgcm/tools/adjoint_sed > ad_taf output.f

make adall: use ad_taf output.f and other subroutines that
were not sent to TAF for translation to generate the
executable:

mitgcmuv_ad

Example subroutines (S/R) not “TAFed”:

* S/Rs to output diagnostics

* S/Rs that are equivalent of an operation by a symmetric matrix (a
transpose of a symmetric matrix is itself)

* S/Rs too complicated for TAF; human intervention is necessary!

Code snippet to illustrate forward code and TAF-generated adjoint

code
Original MITgcm Code (Forward)

do j = 1-oly, sny+oly
do i = 1-olx, snx+olx
ab_gtr(i,j) = abO*gtracer(i,j,k)+ab1*gtrnm(i,j,k,bi,bj,m1)
S+ab2*gtrnm(i,j,k,bi,bj,m2)

end do
end do
end do

An example to help explain the TAF translation

Rewrite forward code:

To:

gtrnm(i,j,k,bi,bj,m2) = 0.d0

gtrnm(i,j,k,bi,bj,m2) = gtrnm(i,j,k,bi,bj,m2)+gtracer(i,j,k)
gtrnm(i,j, k,bi,bj,m2) = gtrnm(i,j,k,bi,bj,m2)+ab_gtr(i,j)

TAF-generated adjoint code
do k = ksize, 1, -1

do j = 1-oly, sny+oly
do i = 1-olx, snx+olx

gtracer_ad(i,j,k) = gtracer_ad(i,j,k)+ab_gtr_ad(i,j)*ab0
gtrnm_ad(i,j,k,bi,bj,m1) = gtrnm_ad(i,j,k,bi,bj,m1)+
Sab_gtr_ad(i,j)*ab1
gtrnm_ad(i,j,k,bi,bj,m2) = gtrnm_ad(i,j,k,bi,bj,m2)+
Sab_gtr_ad(i,j)*ab2
ab_gtr_ad(i,j) = 0.d0
end do

end do
end do

TAF Store directives: An example

Original MITgcm Code (Forward)

TAF-translated Code (Forward)

 DOk=Nr2,-1
CADJ STORE salt (:,:,k-1,bi,bj) = comlevl_bibj k,
CADJ & key=kkey, kind = isbyte
CALL FIND_RHO_2D(
| iMin, iMax, jMin, jMax, k,
| theta(1-OLx,1-OLy,k-1,bi,bj),
| salt (1-OLx,1-OLy,k-1,bi,bj),
O rhoKm]l,
| k-1, bi, bj, myThid)
ENDDO

* TAF store directives inserted because salt gets
overwritten during time stepping.
* TAF translates the store directive to Fortran
code:
comlevl bibj k salt 109h(ip1,ip2,kkey) =
salt(ip1,ip2,k-1,bi,bj)
 Somewhere later (not shown),
comlevl_bibj k salt _109h gets written to
disk.
* The adjoint code loads it back from disk and
assign salt to it.

do ip2 = 1-oly, sny+oly
do ip1 = 1-olx, snx+olx
comlevl bibj_k_salt 109h(ip1,ip2,kkey) = salt(ip1,
Sip2,k-1,bi,bj)
end do
end do
call find_rho_2d(imin,imax,jmin,jmax,k,theta(1-olx,1-
Soly,k-1,bi,bj),salt(1-olx,1-oly,k-1,bi,bj),rhokm1,help_l,bi,bj,
Smythid)
ENDDO

TAF-translated Code (Adjoint)

DO k=2, Nr
do ip2 = 1-oly, sny+oly
do ipl1 = 1-olx, snx+olx
salt(ip1,ip2,k-1,bi,bj) = comlevl_bibj k salt 109h(
Sip1,ip2,kkey)
end do
end do
call find_rho_2d_ad(imin,imax,jmin,jmax,k,theta(1-olx,
S1-oly,k-1,bi,bj),theta_ad(1-olx,1-oly,k-1,bi,bj),salt(1-olx,1-oly,
Sk-1,bi,bj),salt_ad(1-olx,1-oly,k-1,bi,bj),rhokm1_ad,bi,bj)
ENDDO

Conduct three iterations from cold start with a
simple cost (all control adjustments start from 0)

cd WORKINGDIR/ECCOV4/release4
cp -p /efs_ecco/ECCO/V4/rd/scripts/run_script_slurm_autoopt_coldstart_v4r4.bash .
sbatch run_script_slurm_autoopt_coldstart_v4rd.bash

va4rd coldstart.iterQ run directory for iteration 0
vard coldstart.iterl run directory for iteration 1
va4rd coldstart.iter2 run directory for iteration 2
ctrlvec.v4rd_coldstart files for control adjustments (generated by optimization) and adjoint

gradients (generated by each iteration and copied over)

optim.v4r4 _coldstart Where the optimization is conducted, using input files loaded from
ctrlvec.vdr4_coldstart and output the new control adjustments for the
next iteration to ctrlvec.v4r4 coldstart.

Information of previous iterations is saved in OPWARMD & OPWARMI.

A few more details:

A fractional cost reduction target specified (0.4%)The script figures out the
actual target cost value

e ecco_cost (adjoint gradients in packed format) generated (and also ecco_ctrl
(control adjustments for iteration 0) at the end of each iteration;
Examples:
e ecco_cost MIT_CE_000.0pt0000 and ecco_ctrl_MIT_CE_000.0pt0000
e Unpacked control files xx.*.data,
* Unpacked adjoint gradients: adxx.*.data

* The ecco_cost and ecco_ctrl files from previous iterations are used as inputs for
the optimization to generate new control adjustments for the next iteration,
such as ecco_ctrl MIT_CE_000.0pt0001

* The new control adjustments are used as part of the input for the next iteration,
and the iterative process continues

Results: Cost vs. Iteration

Iteration Number Cost Ratio w.r.t. Iteraion0

0 2079042.47585259 1 D Steepest descent
1 2070774.52785874 0.996

Quasi-Newton
2 1284971.72606061 0.618

* For steepest descent, we specify a cost reduction target of 0.004. The actual cost reduction from
iterations 0 to 1 is also 0.004, matching the specified cost reduction target.

Cost values in the table above are the fc values in the cost function file in each run directory, e.g.,
var4_coldstart.iter0/costfunction0000 (see first few lines below):

fc = 2079042.47585259 0.0000000E+00

siv4-conc (gencost 1) = 0.787294673837671D+05 0.130851000000000D+06
sivd-deconc (gencost 2) = 0.124716306787977D+05 0.236400000000000D+04
sivd-exconc (gencost 3) = 0.335788181304271D+04 0.557200000000000D+04

Cost Ratio to Iteration O
o o o o o =
iaY (9] ~ (0] (o] (e»]

o
w

Cost vs. lterations

1leb

O
o

Iteration

= = = = = N
o N LN (@)} (00] o
Cost Value

o
o

Iteration 8 cost is 30%
of iteration O

Small cost reduction
from iteration O to 1 is
consistent with
specified cost
reduction target
Large cost reduction
from iteration 1 to 2,
when line search was
switched from
steepest descent to
Quasi-Newton

Thank youl

Questions:

ecco-support@mit.edu

(please subscribe via
http://mailman.mit.edu/mailman/listinfo/ecco-support)

SPL

