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Ocean Model equations
Discretized equations, mainly focus on MITgcm formulation
some modeling recipe (stability, accuracy, conservation)

Forcing
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interface with sub-grid scale (SGS) parameterization and other
components

MITgcm: https://mitgcm.org/
GitHub: https://github.com/MITgcm/MITgcm

Docs: https://mitgcm.readthedocs.io/en/latest/



Continuous set of equations

Hydrostatic, boussinesq, primitive equation in height-coordinate:
1) Simplified Equation of State (EOS) — incompressible:

density :  p= p/ + pe >~ p(0, S,p0(2))

2) Use constant p¢ in place of p everywhere except in gravity term — boussinesq
3) Reduce vertical momentum Eq. to hydrostatic balance (€¢,, = 0) — hydrostatic
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Free surface

Boundary conditions at surface (z = n) and bottom (z = —H):

Dn 1
We=n) = Ty ~ ;(P —E) ; We——pg)=—-vn VH
combine with (1):
on g 1
4l dz=—(P—E 7
at—l—V/_thz Pc( ) ()

andin (2): Vpp=V, (gpcn — gpez — /gp'dz) = pegVn + Vpp



Solving numerically

» Discretize in space
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choice of horizontal and vertical grid < increment in space
Ax, Ay, Az
for each variable ¢, one value at each grid cell ¢; ;

» Discretize in time
choice of a time increment At
evolution of variable ¢ represented as ¢" at time t = nAt

Ideally: chose resolution in space and time according to processes of interest
Practically: spacial resolution is limited by computer resources while

At is generally limited by stability criteria.
= parameterization to account for unresolved Sub-Grid Scale (SGS)

processes



Time stepping schemes

- Forward Euler time-stepping (17520):
n n _ oe|"
(¢! = gm) /At =

Adams-Bashforth, second order (AB-2, e4p = 0):
(¢t —¢")/At = (2 +eap) 2| — (3 +ean) B2

- Backward Euler time-stepping (1"5:0):

n+1
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generally, 22 = fct(¢) — implicit method

n
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Wide range of oceanic time-scales, use different scheme for each term
(depending on stability, precision and complexity). This affects:

» how the code is organized

» how each term is computed (— diagnostics)
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Crank-Nicolson time-stepping (2O, implicit method):



Simple illustration: 2-D advection of passive tracer

Tracer T advected by non-divergent 2-D flow: % + g—z =0

6_T__u5_T_v5_T__8u.T_(%.T
ot ox oy Oz dy

advective form / flux form

> discretize in space (Az, Ay) .
the continuity equation: §*(uAy) 4 67 (vAz) =0
and using centered 2"?O advection scheme:
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» discretize in time (At) using quasi AB-2 (e.g., eap = 0.05):

T;LJTH — TZ,Z] = At ( (3/2 + GAB)GZJ- — (1/2 + GAB) sz—l)



Time stepping choice

» External mode: dn/0t and —gVn
fast mode: use unconditionally stable scheme (implicit):

- backward Euler (damp fast, un-resolved adjustment)
- Crank-Nicolson (energy conserving)

> Momentum advection + Coriolis term: G = —v - Vv, + fk x v,
for precision (energy conservation) and stability, use AB-2 (or AB-3)

> Viscous/Dissipation term GUi*¢ = —V - (—vVvy,)
use AB-2 (precision), Euler forward (more stable), or/and Backward
(implicit) in the vertical direction.

» Internal modes: Tracer advection and —1/p.Vp’

- AB-2 and synchronized time-stepping
- Direct Space and Time (DST) tracer advection scheme with
staggered time-stepping (more stable)



Surface pressure implicit method

backward time-stepping for surface pressure gradient in (2):

Vit = v — At gvpntt (8)
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and backward time-stepping of transport in (7):
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Using (8) to replace v ™ above:
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Solve iteratively using conjugate gradient method (cg2d)

— get n"* ; replace in (8) to get vj !



Staggered time-stepping

Used in ECCO set-ups: (o-Dhac @At @A) A

1) V2—1/2 N VZ+1/2 using AB[GU}(") (n—1) At nAt (n+1) At

and p’ from 0™, S™ -l G 1)
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3) backward time stepping on few Linear A
terms, e.g., vertical viscosity and diffusion: u:',‘,',,%
invert 3 diagonal operator Ly, Ly g '
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4) backward time stepping for surface pressure



Discretization in space

» curvilinear horizontal grid, locally
orthogonal

» thin shell approximation (H < Rgarth)

» staggered variables on Arakawa C grid
0,S,p at grid-cell center ; u,v,w at
grid-cell faces

» bathymetry with partial cell

» finite volume method:
budget integrated over a grid-cell
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re-scaled vertical coordinate :z*

H+n
H

z=n+2z"

- vertical coordinate follows free-surface displacement
- stretch/squeeze level thickness (ratio: (H +n)/H)

- in 2* coordinate, model domain is fixed, from z* = —H to z* =0

z-coord. z*-coord.




Volume and Tracer equation

Grid-cell face area: A,, Ay, A, (e.g., Ay = h{;‘}cArprg),
grid cell volume: V = A, Az (with Az = hl*Arp),
volume transport: U = A,u ; V=Av; W=Aw
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Tracer (here S) transport fluxes: U.S™ ,V.S"" | W.S™ function of
selected advection scheme, e.g., with 2nd order centered:

USh =U -8 =U(S™, + S1)/2

Note: in z-coordinate, Az"t! = Az™ everywhere except at the surface
(non-linear free-surface); with z*, Az varies everywhere according to %:
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Momentum equation

» Flux form
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for curvature of horizontal grid, requires to compute and add metric
terms

> Vector invariant form (no metric term)

0 0 1
8\’: (f+§)kxvh+VKE+wa—vh = —gVn—p—Vhp +V-(vVvp)+ P —F

with vorticity: ¢ =V x v and kinetic energy: KE = (u? +v?)/2

see MITgem manual ( https://mitgcm.readthedocs.io/en/latest/ ) for
detailed discretization in space of these 2 momentum formulations



Stability Criteria

Based on linear analysis:

» Courant—Friedrichs—Lewy (CFL) number, per process:
advection: CFL® = uAt/Ax
internal wave speed c¢;,,: CFLS,, = ¢y At/Az
external gravity wave c.; = /gH: CFLS, = ce, At/ Az
diffusion: CFL/ = xAt(2/Axz)?
Coriolis: CFL®"™ = fAt

» time-stepping criteria:
Euler forward: CFL < 1
AB-2: CFL < 1/2
Euler Backward, Crank Nicolson: always stable
DST advection: CFL*" < 1

» modified for multi-dimensional / multi-term problem. e.g.,
3-D advection: CFLf‘d” = At - max(u/Az,v/Ay,w/Az)
3-D diffusion: CFLY// = 4 At (k. /Aa? + ky/Ay? + K2/ Az?)

No simple criteria for Non-Linear instability



Model Forcing
» Define a set of primary forcing fields:
directly enter RHS of ocean model equations

» Provide a different set of input fields
to compute primary forcing using, e.g., bulk-formula

> other components (e.g., seaice) can modify primary forcing fields
Primary forcing fields:

- surface Qner (in W/m?), include the short-wave component Q.

- surface Fresh-water flux (E — P in kg/m?/s), including river run-off

- surface salt flux (e.g., from salty seaice)

- surface pressure loading (from atmosphere and/or seaice)

- surface wind-stress

- tidal potential (i.e., horizontal geopotential anomaly)

- geothermal heat flux (in W/m?)



Free surface and fresh-water flux

> No approximation (e.g., ECCO-v4):
Non-linear free-surface (NLFS) — water column changes according
ton

on n 1
91y — —(P-E
5 + /_thdz Pc( )

and Real-Fresh-Water flux (useRealFreshWaterFlux=.TRUE.,)
— add fresh-water and model takes care of salinity dilution
— need to account for heat and tracer content content of P — F

» Linear free-surface approximation (n < H):
— model domain is fixed (disconnected from 7)

an 0 1
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— not conserving due to Wsyrface 7 0

Real-Fresh-Water flux <+ P — E added to 22

needs to convert P — F to "salt-flux" since model domain is
unaffected



Seaice - Ocean dynamical coupling

Thermodynamics
change seaice mass by melting/freezing <+ add/remove water:
— contribute to % (useRealFreshWaterFlux)
but total hydrostatic pressure does not change pg% + g%Mme =0
= only consider ice loading (M;..) if useRealFreshWaterFlux
Dynamics
sea-surface slope contributes to seaice acceleration, leading to strong
coupling between seaice motion, ocean current (divergence) and SSH:
Mice — Phyd — %
V’f] — Vice — %Mice
= careful coupling (and time-stepping) of the 2 components



