
ALGORITHMIC DIFFERENTIATION (AD)

PART I

Ian Fenty

Shreyas Gaikwad

1

Goals for this talk

● Part I (Theory)
○ Reintroduce adjoints in a slightly different context

○ Hopefully show a different way of looking at adjoints

● Part 2 (Example)
○ Work through how Algorithmic Differentiation (AD) actually works in theory and practice

○ Apply these concepts to a simple 1D climate model

2

Utility of gradients

The adjoint operator can help us get gradients for our quantity of interest (QoI)

with respect to any independent controls such as initial and boundary conditions,

model parameters, etc.

● Sensitivity Analysis

● State Estimation

● Uncertainty Quantification

● Optimal Experimental Design (what is the most optimal location for new

sensors for maximum new information gain)

3

MATHEMATICAL NOTATION

● A: Matrix

● x: vector

● A and f: (potentially) non-linear functions

● J and z: Scalar

4

Non-Linear Forward Model

This is the model we are working with. It could be an ocean model like the MITgcm or

an ice sheet model like SICOPOLIS or ISSM.

In a general sense, the model can be expressed as a non-linear function.

5

y = A(x)

J = f(y)

● x is a (uncertain) vector of “controls” (initial / boundary conditions, model

parameters)

● A is a non-linear model (time-stepping ocean / ice-sheet model)

● y is the final model state

● J is a scalar quantity of interest (QoI), could be some model-data misfit,

could be something like projected sea level rise, or transport quantities like

the AMOC. It is a function of the final state y.

How to get the gradients of J with respect to x?

6

Method 1: Perturb one x at a time (Finite Differences)

7

y = A(x)

J = f(y)

Let’s perturb one component of x at a time and observe the resulting change in J.

Perturb the i-th component of x: xᵢ⁺ = x + ε · eᵢ, where eᵢ is a unit vector in the i-th

direction and ε is a small scalar. That will change the value of y to yᵢ⁺ and J to Jᵢ⁺.

∂J/∂xᵢ ≈ [Jᵢ⁺ - J] / ε

∂J/∂xᵢ ≈ [f(yᵢ⁺) - f(y)] / ε

∂J/∂xᵢ ≈ [f(A(xᵢ⁺)) - f(A(x))] / ε

∂J/∂xᵢ = [f(A(xᵢ⁺)) - f(A(x))] / ε + O(ε)

Method 1: Finite Differences (Perturb one x at a time)

8

y = A(x); J = f(y)

∂J/∂xᵢ ≈ [f(A(xᵢ⁺)) - f(A(x))] / ε + O(ε)

Drawbacks:

● Requires N+1 calls of non-linear forward model for N-dimensional gradient wrt x.

● Doesn’t scale well (N ~ 0.5 billion “controls” for ECCO).

● Always has an error term proportional to some power of ε.

● Choice of ε is hard: too large and the response might not be linear, too small and

it leads to numerical round-off errors.

● In practice, for different choices of ε, the values of the gradient can vary wildly.

xᵢ⁺ = x + ε · eᵢ

● Finite Differences (Method 1) uses the non-linear forward model as a black

box and just perturbs the input and uses non-linear functional evaluations to

approximate the directional derivative.

9

y = x, J = y²

dJ/dx ≈ ((x+ε)² - x²)/ε

= (x² + 2xε + ε² - x²)/ε

= (2xε + ε²)/ε

= 2x + ε (slightly off)

Method 1: Finite Differences Example

Method 2: Tangent Linear Model (Linearized Forward Model)

10

δy = ∂A/∂x · δx

∴ δy = A(x) · δx

We again have: y = A(x) and J = f(y)

We compute the directional derivative of y with respect to x using the tangent linear
model. Let δx be a small perturbation in x. The corresponding perturbation in y is given
by:

δJ = ∂f/∂y · δy

∴ δJ = ∂f/∂y · A(x) · δx

The matrix in purple is the Jacobian or the Tangent Linear Model (TLM). Then
propagate δy to get the change in J:

This gives the directional derivative of J along δx. To compute full gradient

∂J/∂x, repeat for each unit vector δx = eᵢ

Method 2: Tangent Linear Model

11

y = A(x)

J = f(y)

Characteristics:

● Precise.

● One call of TLM takes roughly twice as long as a non-linear forward model call.

● Requires N calls of the TLM for N-dimensional gradient wrt x.

● Doesn’t scale well (N ~ 0.5 billion “controls” for ECCO).

δy = A(x) · δx

δJ = ∂f/∂y · δy

To compute full gradient ∂J/∂x, repeat for each unit vector δx = eᵢ

HARD TO GET

TRIVIAL

12

● TLM (Method 2) employs the chain rule to linearize the non-linear forward

model line-by-line. It then propagates small perturbations through the

linearized model equations to get the precise directional derivative.

y = x, J = y²

∴ δy = δx and δJ = 2yδy

In 1D, only one unit vector δx = 1.

∴ δy = 1 and δJ = 2y = 2x

∴ 2x is our directional derivative (precise).

Reminder that for Method 1 our result was

2x + ε (slightly off).

Method 2: Tangent Linear Model Example

Method 3: Adjoint Model (Transpose of TLM)

13

We again have: y = A(x) and J = f(y). Let’s employ the chain rule

∂J/∂xᵢ = ∑j ∂J/∂yj · ∂yj/∂xᵢ

∴ ∂J/∂xᵢ = ∑j ∂yj/∂xᵢ · ∂J/∂yj (both terms are scalars)

∴ ∂J/∂xᵢ = ∑j ∂(A(x))j/∂xᵢ · ∂J/∂yj

∴ ∇ₓJ = (∂A/∂x)ᵀ · ∇ᵧJ

∴ ∇ₓJ = A(x)ᵀ · ∇ᵧJ

The matrix in purple is the transpose of the Tangent Linear Model (TLM), known as the Adjoint
Model. You can compute the entire gradient in one adjoint model pass!

Method 3: Adjoint Model

14

y = A(x); J = f(y)

Characteristics:

● Precise.

● Gradient computed in one adjoint pass.

● For reasons we will soon discuss, it can be 5-100 times slower than the non-

linear forward model (still better than running the non-linear forward model

billions of times).

∇ₓJ = (∂A/∂x)ᵀ · ∇ᵧJ = A(x)ᵀ · ∇ᵧJ
TRIVIALHARD

TO GET

Why is Algorithmic Differentiation (AD) necessary?

● The chain rule has to be propagated across your entire code to get the

derivatives (Remember A(x) represents of your entire codebase).

● The MITgcm is hundred of thousands of lines of code.

● One change in the non-linear forward model could mean several changes in

the TLM or adjoint depending on how the chain rule changes. It is thus error-

prone and tedious to do this manually.

● Example:

15

Compute a,b,c upstream

x=1

z= f(a,b,c)

y=x^2

Compute a,b,c upstream

x=1, dx = 1

z= f(a,b,c)

δy=2xδx

Compute a,b,c upstream

x=1

z= f(a,b,c)

y=x^2 + z

Compute a,b,c upstream

Compute δa,δb,δc upstream

x=1, δx = 1

z= f(a,b,c),

δz = f’(a,b,c,δa,δb,δc)

δy=2xδx + δz

Why is Algorithmic Differentiation (AD) necessary?

16

17

● The Tangent Linear Model is given by:

δy = A(x) · δx = AN(xN-1)....A2(x1)·A1(x) · δx

Some more nuances (looking inside A)

● To keep things readable, let’s assume x is just initial conditions of an ocean model

(no model parameters or boundary conditions). Let’s assume N time steps.

y = A(x) = AN(...(A2(A1(x))))

● For notational convenience,

x1 = A1(x),

xi = Ai(xi-1) i = 2, …, N-1

y = AN(xN-1)

● The Adjoint Model is given by:

∇ₓJ = A(x)ᵀ · ∇ᵧJ = A1(x)ᵀ·A2(x1)ᵀ…AN(xN-1)ᵀ · ∇ᵧJ

18

● The Tangent Linear Model is given by:

δy = A(x) · δx = AN(xN-1)....A2(x1)·A1(x) · δx

Some more nuances (looking inside A)

● The Adjoint Model is given by:

∇ₓJ = A(x)ᵀ · ∇ᵧJ = A1(x)ᵀ·A2(x1)ᵀ…AN(xN-1)ᵀ · ∇ᵧJ
● The sequence of operations above is in our hands.
● If we go from left to right, we have to keep doing matrix-matrix operations, if both matrices are

MxM and we have N matrices, that’s about NM3 operations.
● If we go from right to left, that is always hit the vector on the right with a matrix first, we are

only doing about NM2 operations.
● N ~ 250,000 time steps and M ~ 500,000,000 parameters for ECCO
● 10^31 vs 10^23 floating point operations, that’s a significant difference!

ORDER OF COMPUTATION

ORDER OF COMPUTATION

19

● The Tangent Linear Model is given by:

δy = A(x) · δx = AN(xN-1)....A2(x1)·A1(x) · δx

Some more nuances (looking inside A)

● We need x first, followed by x2, x3, …, xN-1

● Also notice that the 1st timestep’s adjoint matrix is hitting the vector first and

then all the other timesteps’ matrices hit it in the “expected” order.

● This is perfectly fine, since this is the natural order of computation in our non-

linear forward model anyways.

ORDER OF COMPUTATION

20

Some more nuances (looking inside A)

● The Adjoint Model is given by:

∇ₓJ = A(x)ᵀ · ∇ᵧJ = A1(x)ᵀ·A2(x1)ᵀ…AN(xN-1)ᵀ · ∇ᵧJ

ORDER OF COMPUTATION

● We need xN-1 first, followed by xN-2, xN-3, …,x2, x2, x.

● This is reverse of the natural order of computation in our non-linear forward

model or our general understanding of dependencies forward in time.

● Also notice that the N-th timestep’s adjoint matrix is hitting the vector first and

then all the other timesteps’ matrices hit it in the reverse order.

● The adjoint model runs backwards in time!

21

Some more nuances (looking inside A)

● The Adjoint Model is given by:

∇ₓJ = A(x)ᵀ · ∇ᵧJ = A1(x)ᵀ·A2(x1)ᵀ…AN(xN-1)ᵀ · ∇ᵧJ

ORDER OF COMPUTATION

● The adjoint model runs backwards in time!

● (Not shown here) The sign of the advection operator just reverses for the adjoint.

If you were looking at an adjoint movie of the Gulf Stream it would be flowing from

north to south.

● INTUITION: The Gulf Stream is sending “information” to the poles, and you as a

detective are watching the movie in reverse, tracing the "influence trail" back from

the poles to figure out which earlier states or regions mattered most.

Storage using a tape (stack)

● We need the states in the reverse order when computing the adjoint.

● We have three options:
○ Run forward model, store all states (i.e. all the x’s) in memory and retrieve in reverse order

(Tapenade by default).

○ Recompute the state we need from scratch every time we take one step to the left (TAF by default).

○ Something hybrid (checkpointing, classic tradeoff between memory and computation time).

22

● The Adjoint Model is given by:

∇ₓJ = A(x)ᵀ · ∇ᵧJ = A1(x)ᵀ·A2(x1)ᵀ…AN(xN-1)ᵀ · ∇ᵧJ

Why Tangent Linear Model?

● It would seem that the Tangent linear model is not useful when you have the

adjoint model to compute the gradient in one go.

● However, it has its uses:

○ Validation of the adjoint model (ideally should agree to around machine precision!)

○ Second-order optimization methods (Hessian contains the tangent linear model)

○ Uncertainty quantification (Hessian is inverse of the posterior covariance matrix)

23

ALGORITHMIC DIFFERENTIATION (AD)

PART II

Ian Fenty

Shreyas Gaikwad

24

Budyko-Sellers Energy Balance Model

Let’s now work with a small climate model!

25

Budyko-Sellers Model

● Observed temperature gradient

between the equator and poles is a

result of
○ Incoming solar insolation (tries to make

equator much warmer than the poles)

○ Outgoing longwave radiation (local energy

loss, damps temperature increases)

○ Heat transport by winds and oceans (tries to

flatten the temperature gradient by flowing

from equator to poles)

■ COOL the tropics

■ WARM the poles.

● We are looking to model the equator-

to-pole temperature difference.

26

Budyko-Sellers Model local energy budget for each latitude

● ASR: Absorbed solar radiation

● OLR: Outgoing longwave radiation

● H is the meridional heat transport

27

Modeling the heat transport

28

Budyko-Sellers Model local energy budget for each latitude

● ASR: Absorbed solar radiation
● OLR: Outgoing longwave radiation
● The third term is diffusion in spherical

coordinates.

29

Modeling the energy content

● Most of the heat is in the oceans.

● Surface temperature is a good proxy for the heat content of the ocean column

30

● C is the effective heat capacity of the ocean column. Function of latitude depending on
fraction of ocean vs land can vary.

● Ts is the surface temperature.

Budyko-Sellers Model local energy budget for each latitude

● ASR: Absorbed solar radiation
● OLR: Outgoing longwave radiation
● The third term is heat diffusion in

spherical coordinates.

31

Modeling the Radiation terms

32

● Albedo depends linearly on the temperature
● Incoming heat Q depends on the latitude (sine of the latitude actually)
● Stefan-Boltzmann law for outgoing longwave radiation

Budyko-Sellers Model local energy budget for each latitude

33

Let’s look at a pseudo-code

34

Initialize surface temperature to be a constant 290K (17C)

T(i) = 290 for all i in the latitude grid

35

Initialize surface temperature to be a constant 290K (17C)

T(i) = 290 for all i in the latitude grid

for t = 1..N

Incoming radiative flux [time-invariant, constant albedo assumed]

Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

36

Initialize surface temperature to be a constant 290K (17C)

T(i) = 290 for all i in the latitude grid

for t = 1..N

Incoming radiative flux [time-invariant, constant albedo assumed]

Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

Outgoing radiation

Fout(i) = epsilon*sigma* T(i)**4

37

Initialize surface temperature to be a constant 290K (17C)

T(i) = 290 for all i in the latitude grid

for t = 1..N

Incoming radiative flux [time-invariant, constant albedo assumed]

Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

Outgoing radiation

Fout(i) = epsilon*sigma* T(i)**4

Meridional flux (simplified for brevity, central difference scheme)

Fdiff(i) = D*[[T(i+1) - 2T(i) +T(i-1)]] / dx**2

38

Initialize surface temperature to be a constant 290K (17C)

T(i) = 290 for all i in the latitude grid

for t = 1..N

Incoming radiative flux [time-invariant, constant albedo assumed]

Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

Outgoing radiation

Fout(i) = epsilon*sigma* T(i)**4

Meridional flux (simplified for brevity, central difference scheme)

Fdiff(i) = D*[[T(i+1) - 2T(i) +T(i-1)]] / dx**2

Update T (Assume C = 1)

Tnew(i) = T(i)+ dt*[Fin(i)-Fout(i)+Fdiff(i)]

end

39

Initialize surface temperature to be a constant 290K (17C)

T(i) = 290 for all i in the latitude grid

for t = 1..N

Incoming radiative flux [time-invariant, constant albedo assumed]

Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

Outgoing radiation

Fout(i) = epsilon*sigma* T(i)**4

Meridional flux (simplified for brevity, central difference scheme)

Fdiff(i) = D*[[T(i+1) - 2T(i) +T(i-1)]] / dx**2

Update T (Assume C = 1)

Tnew(i) = T(i)+ dt*[Fin(i)-Fout(i)+Fdiff(i)]

end

J = f(Tnew) = Tnew(equator) - Tnew(poles)
40

Before we go into the real code

Let’s differentiate a line of code by hand

41

Initialize surface temperature to be a constant 290K (17C)

T(i) = 290 for all i in the latitude grid

for t = 1..N

Incoming radiative flux [time-invariant, constant albedo assumed]

Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

Outgoing radiation

Fout(i) = epsilon*sigma* T(i)**4

Meridional flux (simplified for brevity, central difference scheme)

Fdiff(i) = D*[[T(i+1) - 2T(i) +T(i-1)]] / dx**2

Update T (Assume C = 1)

Tnew(i) = T(i)+ dt*[Fin(i)-Fout(i)+Fdiff(i)]

end

J = f(Tnew) = Tnew(equator) - Tnew(poles)
42

Initialize surface temperature to be a constant 290K (17C)

T(i) = 290 for all i in the latitude grid

for T = 1..n

Incoming radiative flux [time-invariant, constant albedo assumed]

Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

Outgoing radiation

Fout(i) = epsilon*sigma* T(i)**4

Meridional flux (simplified for brevity, central difference scheme)

Fdiff(i) = D*[[T(i+1) - 2T(i) +T(i-1)]] / dx**2

Update T

Tnew(i) = T(i)+ dt*[Fin(i)-Fout(i)+Fdiff(i)]

end

J = f(Tnew) = Tnew(equator) - Tnew(poles)
43

44

● TLM (Method 2) employs the chain rule to linearize the non-linear forward

model line-by-line. It then propagates small perturbations through the

linearized model equations to get the precise directional derivative.

y = x, J = y²

∴ δy = δx and δJ = 2yδy

In 1D, only one unit vector δx = 1.

∴ δy = 1 and δJ = 2y = 2x

∴ 2x is our directional derivative (precise).

REMINDER ON WHAT TLM DOES

AD tool’s modification of source code to generate TLM

45

Fout(i) = epsilon*sigma* T(i)**4

Fout(i) = epsilon*sigma* T(i)**4 (OG non-linear forward code)

Fout_tl(i) = 4*epsilon*sigma* T(i)**3*T_tl(i) (Propagating pertubations)

Source Code (T(i) coming from upstream)

AD generated TLM Code (T(i), T_tl(i) coming from upstream)

Observations:

● For many lines of non-linear forward code, you have 2 lines in the TLM code
each.

● Some lines may not be differentiated because there’s nothing “active” in them.
● The TLM code has slightly less than 2x the lines of the non-linear forward code.
● It is thus slightly less than 2x times slower.

NOTE: var_tl means δvar in terms of the math.

AD tool’s modification of source code to generate TLM

46

| Fout_tl(i) |new = | 0 4*epsilon*sigma*Told(i)**3| | Fout_tl(i) |old

| T_tl(i) |new = | 0 1 | | T_tl(i) |old

Matrix form of TLM

Fout(i) = epsilon*sigma* T(i)**4 (OG non-linear forward code)

Fout_tl(i) = 4*epsilon*sigma* T(i)**3*T_tl(i) (Propagating pertubations)

AD generated TLM Code (T(i), T_tl(i) coming from upstream)

NOTE: var_tl means δvar in terms of the math.

HELPFUL TIP: Think of every single line of forward code as its own mini-model.

REMINDER ON WHAT THE ADJOINT MODEL IS

47

y = A(x); J = f(y)

Characteristics:

● Precise.

● Gradient computed in one adjoint pass.

● Can be 5-100 times slower than the non-linear forward model (still better than

running the non-linear forward model millions of times).

∇ₓJ = (∂A/∂x)ᵀ · ∇ᵧJ = A(x)ᵀ · ∇ᵧJ
TRIVIALHARD

TO GET

AD tool’s modification of source code to generate Adjoint

48

| Fout_ad(i) |new = | 0 0 | | Fout_ad(i) |old

| T_ad(i) |new = | 4*epsilon*sigma*Told(i)**3 1 | | T_ad(i) |old

Matrix form of Adjoint (Transpose of TLM)

Fout(i) = epsilon*sigma* T(i)**4

Source Code

NOTE:

● You should always read var_ad in your mind as ∂J/∂var (and not as

something proportional or equivalent to var itself).

● Always write down the tangent linear model first and then take the transpose

to get the adjoint.

Transpose of TLM matrix i.e. AT

49

LET’S LOOK A BIT MORE CLOSELY

● We know that the adjoint runs reverse in time, so if the do loop in the forward

code ran from 1 to N, the adjoint runs from N to 1.

● This means we actually don’t have Told(i)!
● We need to store it when we are running the forward code then and then retrieve

it for use here (Tapenade). Or we have to compute it somehow (TAF).

| Fout_ad(i) |new = | 0 0 | | Fout_ad(i) |old

| T_ad(i) |new = | 4*epsilon*sigma*Told(i)**3 1 | | T_ad(i) |old

AD tool’s modification of source code to generate Adjoint

50

Do t = 1, T

Do i = 1, N

… BEFORE …

Fout(i) = epsilon*sigma* T(i)**4

STORE(T(i)) # save T_old

… AFTER (T updated)…

End do

End do

Do t = T, 1, -1

Do i = N, 1, -1

… AFTER_AD (T_new is available but we need T_old) …

RETRIEVE(T(i)) # get T_old

T_ad(i) = 1*T_ad(i) + 4*epsilon*sigma*T(i)**3*Fout_ad(ad)

Fout_ad(i) = 0*T_ad(i)+0*Fout_ad(ad) = 0

… BEFORE_AD …

End do

End do

The

sequence

matters!!

AD tool’s modification of source code to generate Adjoint

| Fout_ad(i) |new = | 0 0| | Fout_ad(i) |old

| T_ad(i) |new = | 4*epsilon*sigma*Told(i)**3 1 | | T_ad(i) |old

Source Code AD generated Adjoint Code

Do t = 1, T

Do i = 1, N

… BEFORE …

Fout(i) = epsilon*sigma* T(i)**4

… AFTER (T(i) updated)…

End do

End do

Differentiating Budyko-Sellers model in Fortran-77

Using TAF and Tapenade

51

Forward model results (E2P delta_T = 34 C)

52

Forward model results (E2P delta_T = 34 C)

53

Forward model results (E2P delta_T = 34 C)

54

Task 1: Validate our gradients

Using TAF and Tapenade

55

Finite differences

56

budyko_sellers takes in vector xxs (control) and computes scalar J (QoI)

∂J/∂xᵢ ≈ [f(A(xᵢ⁺)) - f(A(x))] / ε + O(ε)

Tangent linear code

57

● budyko_sellers takes in vector xxs (control) and computes scalar J (QoI)

● budyko_sellers_tl takes in vector xxs (control), xxs_tl and computes scalar J (QoI), J_tl

Let’s look at the line we differentiated by hand earlier, in

the generated code budyko_sellers_tl

Fout(i) = epsilon*sigma* T(i)**4 (OG non-linear forward code)

Fout_tl(i) = 4*epsilon*sigma* T(i)**3*T_tl(i) (Propagating pertubations)

Tangent linear code

58

● budyko_sellers takes in vector xxs (control) and computes scalar J (QoI)

● budyko_sellers_tl takes in vector xxs (control), xxs_tl and computes scalar J (QoI), J_tl

Let’s look at the do loop to compute the gradient

Tapenade adjoint code

59

Do t = 1, T

Do i = 1, N

Tapenade adjoint code

60

Do t = 1, T

Do i = 1, N

… BEFORE …

Fout(i) = epsilon*sigma* T(i)**4

Tapenade adjoint code

61

Do t = 1, T

Do i = 1, N

… BEFORE …

Fout(i) = epsilon*sigma* T(i)**4

STORE(T(i)) # save T_old

… AFTER (T updated)…

End do

End do

Tapenade adjoint code

62

Do t = 1, T

Do i = 1, N

… BEFORE …

Fout(i) = epsilon*sigma* T(i)**4

STORE(T(i)) # save T_old

… AFTER (T updated)…

End do

End do

Do t = T, 1, -1

Do i = N, 1, -1

Tapenade adjoint code

63

Do t = 1, T

Do i = 1, N

… BEFORE …

Fout(i) = epsilon*sigma* T(i)**4

STORE(T(i)) # save T_old

… AFTER (T updated)…

End do

End do

Do t = T, 1, -1

Do i = N, 1, -1

… AFTER_AD (T_new is available but we need T_old) …

RETRIEVE(T(i)) # get T_old

Tapenade adjoint code

64

Do t = 1, T

Do i = 1, N

… BEFORE …

Fout(i) = epsilon*sigma* T(i)**4

STORE(T(i)) # save T_old

… AFTER (T updated)…

End do

End do

Do t = T, 1, -1

Do i = N, 1, -1

… AFTER_AD (T_new is available but we need T_old) …

RETRIEVE(T(i)) # get T_old

T_ad(i) = 1*T_ad(i) +

4*epsilon*sigma*T(i)**3*Fout_ad(ad)

Fout_ad(i) = 0*T_ad(i)+0*Fout_ad(ad) = 0

… BEFORE_AD …

End do

End do

Tapenade adjoint code

65

● budyko_sellers takes in vector xxs (control) and computes scalar J (QoI)

● budyko_sellers_ad takes in vector xxs (control), J_ad and computes scalar J (QoI), xxs_ad

● budyko_sellers_ad computes the gradient in one pass, no do loop needed.

● You should always read var_ad in your mind as ∂J/∂var (and not as

something proportional or equivalent to var itself).

● J_ad = 1 is therefore just ∂J/∂J = 1. Needed to spinup the adjoint.

Gradients

66

FD vs TLM gradients

67

Adjoint vs TLM gradients

68

State Estimate

● For D=0.6, the equator-to-pole

temperature difference is 34.16

deg Celcius.

● We know that the real value of

the equator-to-pole

temperature difference is 45

deg Celcius.

69

Basics of State Estimation

● Drive a model-data misfit to zero using optimization methods.

● In this case, our cost function is (m: Model, d: Data)

● Our independent variable is the diffusion coefficient D.

● We use steepest descent to drive this cost function down to 0.

70

J = (ΔTm - ΔTd)
2

Steepest descent

71

Tuned results

72

Thank you!

76

A glimpse into utility of TLM and adjoint for UQ

77

A glimpse into Uncertainty Quantification

A glimpse into Uncertainty Quantification

A glimpse into Uncertainty Quantification

A glimpse into Uncertainty Quantification

A glimpse into Uncertainty Quantification

A glimpse into Uncertainty Quantification

83

Adjoint TLM

A glimpse into Uncertainty Quantification

84

Adjoint TLM Gauss-Newton approximation

85

86

87

