ALGORITHMIC DIFFERENTIATION (AD)
PART |

lan Fenty
Shreyas Gaikwad



Goals for this talk

e Part| (Theory)

o Reintroduce adjoints in a slightly different context

o Hopefully show a different way of looking at adjoints
e Part 2 (Example)

o  Work through how Algorithmic Differentiation (AD) actually works in theory and practice
o Apply these concepts to a simple 1D climate model



Utility of gradients

The adjoint operator can help us get gradients for our quantity of interest (Qol)
with respect to any independent controls such as initial and boundary conditions,

model parameters, etc.

Sensitivity Analysis

State Estimation

Uncertainty Quantification

Optimal Experimental Design (what is the most optimal location for new
sensors for maximum new information gain)



MATHEMATICAL NOTATION

e A: Matrix
e X:vector
e A and f: (potentially) non-linear functions

e Jand z: Scalar



Non-Linear Forward Model

This is the model we are working with. It could be an ocean model like the MITgcm or
an ice sheet model like SICOPOLIS or ISSM.

In a general sense, the model can be expressed as a non-linear function.

y = A(X)
J=1(y)

e X is a (uncertain) vector of “controls” (initial / boundary conditions, model
parameters)

e As a non-linear model (time-stepping ocean / ice-sheet model)
y is the final model state

e Jis a scalar quantity of interest (Qol), could be some model-data misfit,
could be something like projected sea level rise, or transport quantities like
the AMOC. It is a function of the final state y.



How to get the gradients of J with respect to x?



Method 1: Perturb one x at a time (Finite Differences)

y = Ax)
J =1(y)
Let’s perturb one component of x at a time and observe the resulting change in J.

Perturb the i-th component of x: xi* = x + € - €j, where €i is a unit vector in the i-th
direction and € is a small scalar. That will change the value of y to yi* and J to Ji*.

oJloxi=[Ji" -J]/ ¢

odloxi = [f(yi") - f(y)] / €

aJ/oxi = [f(A(xi")) - F(A(X))] / €

8J19xi = [F(A(xi")) - FAX))] / € + (DIE)




Method 1: Finite Differences (Perturb one x at atime)

y = A(x); J =1(y)
Xi" =X + € - €

8JI9x; = [f(A(XY)) - f(A(X))] / € + [DIE)

Drawbacks:

Requires N+1 calls of non-linear forward model for N-dimensional gradient wrt x.
Doesn’t scale well (N ~ 0.5 billion “controls” for ECCO).

Always has an error term proportional to some power of €.

Choice of € is hard: too large and the response might not be linear, too small and
it leads to numerical round-off errors.

In practice, for different choices of €, the values of the gradient can vary wildly.

8



Method 1: Finite Differences Example

e Finite Differences (Method 1) uses the non-linear forward model as a black
box and just perturbs the input and uses non-linear functional evaluations to
approximate the directional derivative.

y=X,Jd =V
dJ/dx = ((x+¢€)? - x?)/¢
= (X2 + 2xe + €2 - x?)/¢
= (2xe + €?)/¢

= 2x + ¢ [SHGRISISH



Method 2: Tangent Linear Model (Linearized Forward Model)
We again have: y = A(x) and J = f(y)

We compute the directional derivative of y with respect to x using the tangent linear
model. Let dx be a small perturbation in x. The corresponding perturbation in y is given

by:
Oy = dA/dx - Ox
s Oy = A(X) - OX

The matrix in purple is the Jacobian or the Tangent Linear Model (TLM). Then
propagate dy to get the change in J:

odJ = dfloy - Oy
. 0d =dfldy - A(x) - OX

This gives the directional derivative of J along ox. To compute full gradient
dJ/ox, repeat for each unit vector ox = e;



Method 2: Tangent Linear Model

Fﬁ> HARD TO GET
y = A(X) Sy = A(x) - OX
J=1(y) 5J = dfloy - 8y

L TRIVIAL

To compute full gradient dJ/dx, repeat for each unit vector ox = e

Characteristics:

Precise.

One call of TLM takes roughly twice as long as a non-linear forward model call.
Requires N calls of the TLM for N-dimensional gradient wrt x.

Doesn’t scale well (N ~ 0.5 billion “controls” for ECCO).

11



Method 2: Tangent Linear Model Example

e TLM (Method 2) employs the chain rule to linearize the non-linear forward
model line-by-line. It then propagates small perturbations through the
linearized model equations to get the precise directional derivative.

y=X,J=y?

.. Oy = Ox and 0J = 2y0y

In 1D, only one unit vector ox = 1.

~ 0y =1and dd =2y = 2x

- 2x is our directional derivative (Precise).

Reminder that for Method 1 our result was

2x + ¢ | SISO

12



Method 3: Adjoint Model (Transpose of TLM)

We again have: y = A(x) and J = f(y). Let’'s employ the chain rule

8JIaxi = 5 dJIdy; - dyilox:
~ 9JIoxi = Y| dyiloxi - dJIdyj (both terms are scalars)
~ adJloxi = > d(A(X))iloxi - dJlay;

& Uxd = (OAIAX)T - Vyd

S Vxd = AX)T - Vyd

The matrix in purple is the transpose of the Tangent Linear Model (TLM), known as the Adjoint
Model. You can compute the entire gradient in one adjoint model pass!

13



Method 3: Adjoint Model
y = A(x); I =1(y)

Vsxd = (BAIX)T - Wy = A(X)T - VyJ
HARD TRIVIAL
TO GET
Characteristics:

Precise.
Gradient computed in one adjoint pass.

e For reasons we will soon discuss, it can be 5-100 times slower than the non-
linear forward model (still better than running the non-linear forward model
billions of times).

14



Why is Algorithmic Differentiation (AD) necessary?

The chain rule has to be propagated across your entire code to get the
derivatives (Remember A(x) represents of your entire codebase).

The MITgcm is hundred of thousands of lines of code.

One change in the non-linear forward model could mean several changes in
the TLM or adjoint depending on how the chain rule changes. It is thus error-
prone and tedious to do this manually.

Example:

# Compute a,b,c upstream

# Compute a,b,c upstream # Compute a,b,c upstream | # Compute a,b,c upstream

x=1 x=1,dx=1 x=1 x=1,0x=1
z=f(a,b,c) z=f(a,b,c) z=f(a,b,c) z=f(a,b,c),
y=x"2 Oy=2x0x y=x"2

Qy=2X0X

15



Why is Algorithmic Differentiation (AD) necessary?

Generating and maintaining the adjoint of a state-of-the-art ocean GCM
hand-written adjoint Automatic Differentiation

LECTURE NOTES IN COMPUTATIONAL
SCIENCE AND ENGINEERING

Christian H, Bischof - H. Martin Blicker
Paul Hovland - Uwe Naumann - Jean Utke Editors

Advancesin
Automatic

Differentiation

@ Springer

Giering & Kaminski (1998); Marotzke et al. (1999); Heimbach et al. (2005); Utke et al. (2007); Griewank & Walther (2008)
16



Some more nuances (looking inside A)

e To keep things readable, let's assume x is just initial conditions of an ocean model
(no model parameters or boundary conditions). Let’'s assume N time steps.

y = AX) = Ay (Ax(AL(x))))

e [or notational convenience,

Xl = Al(X)’
Xi — AI(XI-l) | = 2, "y N‘l
y = An(Xno1)

e The Tangent Linear Model is given by:
Oy = A(X) - OX = A (Xpi1)----An(Xq)-A(X) - OX
e The Adjoint Model is given by:



Some more nuances (looking inside A)

ORDER OF COMPUTATION

e The Tangent Linear Model is given by:
Oy = A(X) - OX = A (Xpi1)----As(Xq)-A(X) - OX
e The Adjoint Model is given by:

ORDER OF COMPUTATION

e The sequence of operations above is in our hands.

e If we go from left to right, we have to keep doing matrix-matrix operations, if both matrices are
MxM and we have N matrices, that's about NM?3 operations.

e If we go from right to left, that is always hit the vector on the right with a matrix first, we are
only doing about NM? operations.

e N ~ 250,000 time steps and M ~ 500,000,000 parameters for ECCO

e 10M31vs 10723 floating point operations, that’s a significant difference!

18



Some more nuances (looking inside A)

e The Tangent Linear Model is given by: ORDER OF COMPUTATION

Oy = A(X) - OX = A (Xpi1)----As(Xq)-A(X) - OX

e We need x first, followed by x,, X3, ..., Xy1

e Also notice that the 1st timestep’s adjoint matrix is hitting the vector first and
then all the other timesteps’ matrices hit it in the “expected” order.

e This is perfectly fine, since this is the natural order of computation in our non-
linear forward model anyways.

19



Some more nuances (looking inside A)

e The Adjoint Model is given by: ORDER OF COMPUTATION

|

o We need x4 first, followed by Xy .5, Xn.35 «=sX2, X5, X.

e This is reverse of the natural order of computation in our non-linear forward
model or our general understanding of dependencies forward in time.

e Also notice that the N-th timestep’s adjoint matrix is hitting the vector first and
then all the other timesteps’ matrices hit it in the reverse order.

e The adjoint model runs backwards in time!

20



Some more nuances (looking inside A)

e The Adjoint Model is given by: ORDER OF COMPUTATION

|

e The adjoint model runs backwards in time!

e (Not shown here) The sign of the advection operator just reverses for the adjoint.
If you were looking at an adjoint movie of the Gulf Stream it would be flowing from
north to south.

e INTUITION: The Gulf Stream is sending “information” to the poles, and you as a
detective are watching the movie in reverse, tracing the "influence trail" back from
the poles to figure out which earlier states or regions mattered most.

21



Storage using a tape (stack)

e The Adjoint Model is given by:

e We need the states in the reverse order when computing the adjoint.

e We have three options:
o Run forward model, store all states (i.e. all the x’s) in memory and retrieve in reverse order
(Tapenade by default).
o Recompute the state we need from scratch every time we take one step to the left (TAF by default).
o Something hybrid (checkpointing, classic tradeoff between memory and computation time).

22



Why Tangent Linear Model?

e [t would seem that the Tangent linear model is not useful when you have the
adjoint model to compute the gradient in one go.
e However, it has its uses:
o Validation of the adjoint model (ideally should agree to around machine precision!)

o Second-order optimization methods (Hessian contains the tangent linear model)

o Uncertainty quantification (Hessian is inverse of the posterior covariance matrix)

23



ALGORITHMIC DIFFERENTIATION (AD)
PART Il

lan Fenty
Shreyas Gaikwad

24



Budyko-Sellers Energy Balance Model

Let’'s now work with a small climate model!

25



Budyko-Sellers Model

e Observed temperature gradient
between the equator and poles is a

result of

o Incoming solar insolation (tries to make
equator much warmer than the poles)

o Outgoing longwave radiation (local energy
loss, damps temperature increases)

o Heat transport by winds and oceans (tries to
flatten the temperature gradient by flowing
from equator to poles)

m COOL the tropics
m  WARM the poles.

e We are looking to model the equator-
to-pole temperature difference.

Emitted terrestrial

Absorbed
solar radiation

Horizontal
transport

Figure 3.3: Representation of a one-dimensional EBM for
which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml

26



Budyko-Sellers Model local energy budget for each latitude

OPA0) _ ASR(4) ~ OLR(9) — -5 1

2ma? cos ¢ 0@

e ASR: Absorbed solar radiation
e OLR: Outgoing longwave radiation
e H is the meridional heat transport

Figure 3.3: Representation of a one-dimensional EBM for
which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml

27



Modeling the heat transport

Let's now formally introduce a parameterization that approximates the heat transport as a down-gradient diffusion

process:

oT
9¢

H(p) ~ —27a’ cos ¢ D

With D a parameter for the diffusivity or thermal conductivity of the climate system, a numberin Wm~2°C~ 1,

The value of D will be chosen to match observations —i.e. tuned.

28



Budyko-Sellers Model local energy budget for each latitude

OFE(¢) D 8( BTS)
COS ¢

— = ASR(¢) — OLR(9) +|— 396 5

Emitted terrestrial

e ASR: Absorbed solar radiation

e OLR: Outgoing longwave radiation Foore
. . . . . . solar radiation
e The third term is diffusion in spherical Horizontal
transport

coordinates.

Figure 3.3: Representation of a one-dimensional EBM for
which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml



Modeling the energy content

e Most of the heat is in the oceans.
e Surface temperature is a good proxy for the heat content of the ocean column

e C is the effective heat capacity of the ocean column. Function of latitude depending on
fraction of ocean vs land can vary.
e Tsis the surface temperature.

30



Budyko-Sellers Model local energy budget for each latitude

0T
ot

C(¢)—. [F ASR(¢) — OLR(¢) +

ASR: Absorbed solar radiation
OLR: Outgoing longwave radiation
The third term is heat diffusion in
spherical coordinates.

D 0 oT,
cos 9 (C"Sé o )

Figure 3.3: Representation of a one-dimensional EBM for

which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml

31



Modeling the Radiation terms

e Albedo depends linearly on the temperature

e Incoming heat Q depends on the latitude (sine of the latitude actually)
e Stefan-Boltzmann law for outgoing longwave radiation

- Insolation v. Latitude Tikt Angle 23.45
N o . Dec.21 |
E . winter solstice AN L s
S 500 Se——— N summer solstice
[ 1 ( ) ] ( ] '9 ‘ :
§ 400 O -~ 4
3 3 (\\)o\o N\
£ [N
2300
S
Q
W
4 1200
S
OLR = eoT :
S < 100
0 80 60 40 20 40 50 80

0, 2
‘ Latitude )
southern hemisphere northern hemisphere

32



Budyko-Sellers Model local energy budget for each latitude

C(¢)

0T
ot

D 9
cos(¢) ¢

(1 — a(T5)] Q(d)|— 60'T84 +

(cos(9)

o7
d¢

)

Figure 3.3: Representation of a one- dimensional EBM for
which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml

33




Let’s look at a pseudo-code

34



Initialize surface temperature to be a constant 290K (17C)
T(i) = 290 for all i in the latitude grid

Emitted terrestrial

Absorbed
solar radiation

Horizontal
transport

Figure 3.3: Representation of a one-dimensional EBM for
which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml

35



Initialize surface temperature to be a constant 290K (17C)
T(i) = 290 for all i in the latitude grid

fort=1..N

Incoming radiative flux [time-invariant, constant albedo assumed]

Fin(i) = sx()*(1.d0-alpha_const(i)) + xxs (control)

Emitted terrestrial

Absorbed
solar radiation

Horizontal
transport

Figure 3.3: Representation of a one-dimensional EBM for
which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml

36



Initialize surface temperature to be a constant 290K (17C)
T(i) = 290 for all i in the latitude grid

fort=1..N
Incoming radiative flux [time-invariant, constant albedo assumed]

Fin(i) = sx()*(1.d0-alpha_const(i)) + xxs (control)

Emitted terrestrial

Absorbed
solar radiation

Outgoing radiation
Fout(i) = epsilon*sigma* T(i)**4

Horizontal
transport

Figure 3.3: Representation of a one-dimensional EBM for
which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml

37



Initialize surface temperature to be a constant 290K (17C)
T(i) = 290 for all i in the latitude grid

fort=1..N
Incoming radiative flux [time-invariant, constant albedo assumed]
Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

Outgoing radiation
Fout(i) = epsilon*sigma* T(i)**4

Emitted terrestrial

Absorbed
solar radiation

Horizontal
transport

Meridional flux (simplified for brevity, central difference scheme)
Fdiff(i) = D*[ [ T(i+1) - 2T(i) +T(i-1)] ] / dx**2

Figure 3.3: Representation of a one-dimensional EBM for
which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml

38



Initialize surface temperature to be a constant 290K (17C)
T(i) = 290 for all i in the latitude grid

fort=1..N

end

Incoming radiative flux [time-invariant, constant albedo assumed]
Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

Outgoing radiation
Fout(i) = epsilon*sigma* T(i)**4

Emitted terrestrial

Absorbed
solar radiation

Horizontal
transport

Meridional flux (simplified for brevity, central difference scheme)
Fdiff(i) = D*[ [ T(i+1) - 2T(i) +T(i-1)] ] / dx**2

Update T (Assume C =1)
TneW(l) = T(|)+ dt*[FIn(l)-FOUt(I)+FdIﬁ(I)] Figure 3.3: Representation of a one-dimensional EBM for

which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml

39



Initialize surface temperature to be a constant 290K (17C)
T(i) = 290 for all i in the latitude grid

fort=1..N
Incoming radiative flux [time-invariant, constant albedo assumed]
Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

Outgoing radiation
Fout(i) = epsilon*sigma* T(i)**4

Emitted terrestrial

Absorbed
solar radiation

Horizontal
transport

Meridional flux (simplified for brevity, central difference scheme)
Fdiff(i) = D*[ [ T(i+1) - 2T(i) +T(i-1)] ] / dx**2

Update T (Assume C =1)
TneW(l) = T(|)+ dt*[FIn(l)-FOUt(I)+FdIﬁ(I)] Figure 3.3: Representation of a one-dimensional EBM for

which the temperature T; is averaged over a band of longitude.
end

http://www.climate.be/textbook/chapter3_node6.xml

J = f(Tnew) = Tnew(equator) - Tnew(poles) 40



Before we go into the real code

Let's differentiate a line of code by hand

41



Initialize surface temperature to be a constant 290K (17C)
T(i) = 290 for all i in the latitude grid

fort=1..N
Incoming radiative flux [time-invariant, constant albedo assumed]
Fin(i) = sx(i)*(1.d0-alpha_const(i)) + xxs (control)

Outgoing radiation
Fout(i) = epsilon*sigma* T(i)**4

Emitted terrestrial

Absorbed
solar radiation

Horizontal
transport

Meridional flux (simplified for brevity, central difference scheme)
Fdiff(i) = D*[ [ T(i+1) - 2T(i) +T(i-1)] ] / dx**2

Update T (Assume C =1)
TneW(l) = T(|)+ dt*[FIn(l)-FOUt(I)+FdIﬁ(I)] Figure 3.3: Representation of a one-dimensional EBM for

which the temperature T; is averaged over a band of longitude.
end

http://www.climate.be/textbook/chapter3_node6.xml

J = f(Tnew) = Tnew(equator) - Tnew(poles) 42



Outgoing radiation
Fout(i) = epsilon*sigma* T(i)**4

Emitted terrestrial

Absorbed

solar radiation

Horizontal
transport

Figure 3.3: Representation of a one-dimensional EBM for
which the temperature T; is averaged over a band of longitude.

http://www.climate.be/textbook/chapter3_node6.xml

43




REMINDER ON WHAT TLM DOES

e TLM (Method 2) employs the chain rule to linearize the non-linear forward
model line-by-line. It then propagates small perturbations through the
linearized model equations to get the precise directional derivative.

y=X,J=y?

.. Oy = Ox and 0J = 2y0y

In 1D, only one unit vector ox = 1.

~ 0y =1and dd =2y = 2x

- 2x is our directional derivative (Precise).

44



AD tool's modification of source code to generate TLM

Source Code (T(i) coming from upstream)

Fout(i) = epsilon*sigma* T(i)**4

AD generated TLM Code (T(i), T _tl(i) coming from upstream)

Fout(i) = epsilon*sigma* T(i)**4 (OG non-linear forward code)
Fout_tl(i) = 4*epsilon*sigma* T(i)**3*T_tl(i) (Propagating pertubations)

Observations:

e For many lines of non-linear forward code, you have 2 lines in the TLM code

each.
e Some lines may not be differentiated because there’s nothing “active” in them.

The TLM code has slightly less than 2x the lines of the non-linear forward code.
e Itis thus slightly less than 2x times slower.

NOTE: var_tl means dvar in terms of the math.

45



AD tool’'s modification of source code to generate TLM

AD generated TLM Code (T(i), T_tl(i) coming from upstream)

Fout(i) = epsilon*sigma* T(i)**4 (OG non-linear forward code)
Fout_tl(i) = 4*epsilon*sigma* T(i)**3*T_tl(i) (Propagating pertubations)

Matrix form of TLM

| Fout_tl(i) |,ew =10  4*epsilon*sigma*T,,,(1)**3| | Fout_tl(i) |,q4
| T_t()  |new =10 1 T og

HELPFUL TIP: Think of every single line of forward code as its own mini-model.

NOTE: var_tl means dvar in terms of the math. 0



REMINDER ON WHAT THE ADJOINT MODEL IS
y = A(X); J =1(y)

Vid = (OA/OX)T - VyJ = A(X)T - Vyd

HARD TRIVIAL

Characteristics: TO GET

e Precise.
Gradient computed in one adjoint pass.
e Can be 5-100 times slower than the non-linear forward model (still better than

running the non-linear forward model millions of times).

47



AD tool’'s modification of source code to generate Adjoint

Source Code

Fout(i) = epsilon*sigma* T(i)**4

Matrix form of Adjoint (Transpose of TLM)

| Fout_ad(i) |,ew =10 0| | Fout_ad(i) |,q4
| T _ad(i) lhew = | 4*epsilon*sigma*T ,4(1)**3 1| | T_ad(i) loid

Transpose of TLM matrix i.e. AT
NOTE:

e You should always read var_ad in your mind as dJ/dvar (and not as
something proportional or equivalent to var itself).

e Always write down the tangent linear model first and then take the transpose
to get the adjoint.



AD tool’'s modification of source code to generate Adjoint

LET'S LOOK A BIT MORE CLOSELY

| Fout_ad(i) |, =10 0| | Fout_ad(i) |,q4

| T _ad(i) lhew = | 4*epsilon*sigma*T ,,(1)**3 1| | T_ad(i) loid

e \We know that the adjoint runs reverse in time, so if the do loop in the forward
code ran from 1 to N, the adjoint runs from N to 1.

e This means we actually don’t have T, 4(1)!

e \We need to store it when we are running the forward code then and then retrieve
it for use here (Tapenade). Or we have to compute it somehow (TAF).

49



AD tool’'s modification of source code to generate Adjoint

| Fout_ad(i) |,enw =10 0] | Fout_ad(i) |yq
| T _ad(i) lhew = | 4*epsilon*sigma*T4(1)**3 1] | T ad(i) loig

Source Code AD generated Adjoint Code
Dot=1,T
Doi=1,N
Dot=1,T ~ ...BEFORE...
Doi=1,N Fout(i) = epsilon*sigma* T(i)**4
- ...BEFORE... - STORE(T(i)) # save T_old
Fout(i) = epsilon*sigma* T(i)**4 - ... AFTER (T updated)...
- ... AFTER (T(i) updated)... End do
End do End do
End do Dot=T,1,-1
Doi=N,1,-1
- ... AFTER_AD (T_new is available but we need T_old) ...
RETRIEVE(T(i)) # get T_old
The T ad(i) = 1*T_ad(i) + 4*epsilon*sigma*T(i)**3*Fout_ad(ad)
sequence Fout_ad(i) = 0*T_ad(i)+0*Fout_ad(ad) = 0
matters!!
End do

End do

50



Differentiating Budyko-Sellers model in Fortran-77

Using TAF and Tapenade

51



Forward model results (E2P delta T = 34 C)

Budyko-Sellers Steady-State Surface Temperature

—— Final Surface Temperature
- == Freezing Point

25 A

20 4

15 A

10 A

Temperature (°C)

-90 -75 —-60 —-45 -30 -15 0 15 30 45 60 75 90
Latitude (degrees)



Forward model results (E2P delta T = 34 C)

Budyko-Sellers Albedo (Linear Temperature-Dependent)

0.45

0.40 A

0.35 A

Albedo

0.30 A

0.25 -

0.20 A

90 -75 —60 -45 -30 -15 0 15 30 45 60
Latitude (degrees)

75

20

53



Forward model results (E2P delta T = 34 C)

Budyko-Sellers Steady-State Energy Balance

Incoming Radiation
300 - Outgoing Radiation
Meridional Diffusion
250 A
200
£
= 150 A
>
=
* 100 -
50 -
0 -
_50 ] T T T T T T T T T T T
-90 -75 -60 —45 -30 -15 0 15 30 45 60 75

Latitude (degrees)

90

54



Task 1: Validate our gradients

Using TAF and Tapenade

55



Finite differences

budyko_sellers takes in vector xxs (control) and computes scalar J (Qol)

0J19xi = [f(A(XiY)) - fF(A(X))] / € + [DIE)

open a file to save gradients (dJ/dx)
open(unit=111, file='dJdX_from_finite_differences.txt')
J = 0.0d0

DOCI =1 N
perturb one element of xxs
XXS(I) = EPS

call budyko_sellers( XXS, J )

reset perturbation to zero
XXS(I) = 0.
print %, 'values of gradient for I = ', I,
(J-J_ORIG)/EPS
write(unit=111, fmt='(F24.17,A)') (J-J_ORIG)/EPS
END DO

close(unit=111)

56



Tangent linear code

e budyko_sellers takes in vector xxs (control) and computes scalar J (Qol)
e Dbudyko_sellers tl takes in vector xxs (control), xxs_tl and computes scalar J (Qol), J _tl

Let’s look at the line we differentiated by hand earlier, in
the generated code budyko sellers tl

fout_t1l(i) = epsilonksigmax4xt(i)**kx3xt_t1(i)

fout(i) = epsilonksigmaskxt(i)skx4

Fout(i) = epsilon*sigma* T(i)**4 (OG non-linear forward code)
Fout_tl(i) = 4*epsilon*sigma* T(1)**3*T_tl(i) (Propagating pertubations)

57



Tangent linear code

budyko_sellers takes in vector xxs (control) and computes scalar J (Qol)
budyko_sellers_tl takes in vector xxs (control), xxs_tl and computes scalar J (Qol), J_tl

Let's look at the do loop to compute the gradient

open a file to save gradients (dJ/dx)
open(unit=111,file='dJdX_from_tangent_linear.txt')

0.0d0o
DO I =1, N
perturb one element of xxs
XXS_TL(I) = 1.
call budyko_sellers_t1l( XXS, XXS_TL, J, J_TL )

reset perturbation to zero
XXS_TL(I) = 0.

print *, 'values of gradient for I = ', I, ': ', J_TL
write(unit=111, fmt='(F24.17,A)') J_TL
END DO

close(unit=111)

58



Tapenade adjoint code

DO iter=1,max_iter

Bo i=1,n

Dot=1,T
Doi=1,N

59



Tapenade adjoint code

DO iter=1,max_iter
Bo i=1,n

fout(i) = epsilonxsigmaxt(1)*x*4

Dot=1,T
Doi=1,N

Fout(i) = epsilon*sigma* T(i)**4

60



Tapenade adjoint code

DO iter=1,max_iter Dot=1,T
D Doi=1,N
— - ‘ : Jll ... BEFORE...
fout(1) epsilonksigmaxt (1)%x%4 Fout(i) = epsilon*sigma® ()4
CALL PUSHREAL8(t(i)) ~ STORE(T() #save T_old
- ... AFTER (T updated)...

ENDDO End do
ENDDO End do

61



Tapenade adjoint code

DO iter=1,max_iter Dot=1,T
Bo i=1,n Doi=1,N
E— . : WYERY™A | - BEFORE..
fout(1) ep51lon*31gma t(1) Fout(i) = epsilon*sigma* T(i)**4
CALL PUSHREALS(t(i)) ~ STORE(T() #save T_old
- ... AFTER (T updated)...
ENDDO End do
ENDDO End do
DO iter=max_iter,1,-1 Dot=T,1,-1
Doi=N,1, -1

DO i=n,1,-1

62



Tapenade adjoint code

DO iter=1,max_iter
~ A

fout (i)

CALL PUSHREAL8(t(1i))

ENDDO
ENDDO

DO iter=max_iter,1,-
DO i=n,1,-

CALL POPREAL8(t(1))

Dot=1,T
Doi=1,N

Fout(i) = epsilon*sigma* T(i)**4

End do
End do
Dot=T,1,-1
Doi=N,1,-1

63



Tapenade adjoint code

DO iter=1,max_iter

fout(i) = epsilonxsigmaxt(1)*x4

CALL PUSHREAL8(t(i))

ENDDO
ENDDO

DO iter=max_iter,1,-
DO i=n,1,-

CALL POPREAL8(t(1i))

t_ad(i) = t_ad(i) + 4xt(i)**3%epsilonksigmaxfout_ad(i)
fout_ad(i) = 0.D0

Dot=1,T
Doi=1,N

Fout(i) = epsilon*sigma* T(i)**4

End do
End do
Dot=T,1,-1
Doi=N,1,-1

T ad(i) = 1*T_ad(i) +
4*epsilon*sigma*T(i)**3*Fout_ad(ad)
Fout_ad(i) = 0*T_ad(i)+0*Fout_ad(ad) =0

End do
End do

64



Tapenade adjoint code

e budyko_sellers takes in vector xxs (control) and computes scalar J (Qol)
e Dbudyko_ sellers_ad takes in vector xxs (control), J_ad and computes scalar J (Qol), xxs_ad
e budyko_sellers_ad computes the gradient in one pass, no do loop needed.

initialize with J AD = 1
J AD = 1.
call budyko_sellers_ad( XXS, XXS_AD, J, J_AD )

DO I =1, N
print *, 'gradient of J w.r.t. XXS ', I, XXS_AD(1)
END DO

e You should always read var_ad in your mind as dJ/dvar (and not as
something proportional or equivalent to var itself).
e J ad =1 is therefore just aJ/dJ = 1. Needed to spinup the adjoint.

65



Gradients

Gradients

0.0025 A

0.0000 A

—0.0025 A

—0.0050 A

—0.0075 A

—0.0100 A

—0.0125 A

—0.0150 A

—— Adjoint Gradient
—— TLM Gradient
—== FD Gradient

-0.0175
=90

=75

-60

-45

=30

T T

-15 0 15
Latitude (degrees)

T

30

T T T

45 60 75

66



FD vs TLM gradients

-0.01653916508417628
-0.01267075637159216
-0.01084356648216779
-0.00966999629781104
-0.00880994893114733
-0.00813005409592375
-0.008756494163618162
-0.00707800206133326
-0.00664681922705905
-0.00625676203594308
-0.00589781217694750
-0.00556284893217323
-0.0085246661920408816
-0.00494534781795133
-0.00465592513078169
-0.00437608340140598
-0.00410400767638958
-0.0038382613520756586
-0.00357769556618080
-0.00332139064907432
-0.00306860593104386
-0.00281874643205245
-0.00257133438318727
-0.008232598887671662
-0.00208240915412558
-0.00184036056579226
-0.00159966786346462
-0.00136019934094743
-0.00111507268162899
-0.00087638791613382
-0.00064489384278301

O AAALM0LEQLTRELQOOR

-0.016539155697657867
-0.01267075135869183
-0.01084356336210099
-0.00966999402492560
-0.00880994712615732
-0.00813005279620890
-0.00756494069765643
-0.00707800122798549
-0.00664681864135141
-0.00625676183507197
-0.00589781184493842
-0.00556284867184190
-0.00524666186681259
-0.00494534767571454
-0.00465592528633375
-0.00437608347310064
-0.00410400808184414
-0.00383826140119467
-0.00357769584727457
-0.00332139093827167
-0.00306860644248948
-0.00281874698792770
-0.00257133494258996
-0.00232598936094236
-0.00208240944556558
-0.00184036141488459
-0.00159966797194391
-0.00136019978189429
-0.00111507279026799
-0.00087638828094106
-0.00064489468136643

—0O DAQ/ITOLLADATEDYALL

67



Adjoint vs TLM gradients

_Ia.61653915597657863
-0.01267075135869208
-0.01084356336210131
-0.00966999402492580
-0.00880994712615741
-0.00813005279620923
-0.00756494069765668
-0.00707800122798573
-0.00664681864135159
-0.00625676183507226
-0.00589781184493867
-0.00556284867184213
-0.00524666186681274
-0.00494534767571469
-0.00465592528633384
-0.00410400808184417
-0.00383826140119473
-0.00357769584727464
-0.00332139093827176
-0.00306860644248954
-0.00281874698792772
-0.00257133494259004
-0.00232598936094237
-0.0020824094456565566
-0.00184036141488467
-0.00159966797194393
-0.00111507279026801
-0.00087638828094107
-0.00064489468136644
-0.00041946030152067

—-0.00019904064044680

0.00001733535649476

0.00023057714647199

0.00044154289729336

-0.081653915597657857
-0.01267075135869183
-0.01084356336210099
-0.00966999402492560
-0.00880994712615732
-0.00813005279620890
-0.00756494069765643
-0.00707800122798549
-0.00664681864135141
-0.00625676183507197
-0.00589781184493842
-0.00556284867184190
-0.00524666186681259
-0.00494534767571454
-0.00465592528633375
-0.00410400808184414
-0.00383826140119467
-0.00357769584727457
-0.00332139093827167
-0.00306860644248948
-0.00281874698792770
-0.8025713349425658996
-0.00232598936094236
-0.002082408944556558
-0.00184036141488459
-0.00159966797194391
-0.801115087279026799
-0.000876388280941086
-0.00064489468136643
-0.00041946030152066

—0.00019904064044680

0.00001733535649475

0.00023057714647199

0.00044154289729335

68



State Estimate

e For D=0.6, the equator-to-pole
temperature difference is 34.16
deg Celcius.

e \We know that the real value of
the equator-to-pole
temperature difference is 45
deg Celcius.

Temperature (°C)

Budyko-Sellers Steady-State Surface Temperature

25 4

20 A

15 A

10 A

—-==- Freezing Point

—— Final Surface Temperature

=75 —60 —45 -30 -15 0 15 30 45 60
Latitude (degrees)

75

920

69



Basics of State Estimation

e Drive a model-data misfit to zero using optimization methods.
e In this case, our cost function is (m: Model, d: Data)

J = (AT - AT,)?

e Our independent variable is the diffulion coefficient D.
e \We use steepest descent to drive this cost function down to O.

DO ITER_GD = 1, MAX_ITER_GD
initialize with J_AD = 1
J_AD =
XXS_AD = 0.0D0

DIFF = 0.6D0 + XXS

XXS = XXS - ETAxXXS_AD

call budyko_sellers(XXS, 3J)

END DO

call budyko_sellers_ad( XXS, XXS_AD,

J,

J_AD )

70



Steepest descent

T_pole: 265.450

GradDes I: 0 | Cost J:

T_pole:
GradDes I: 2 | Cost J:

T_pole:

GradDes I: 5 Cost J:

T_pole: 255.730 | T_equator:
GradDes I: 10 Cost J:
T_pole: 255.729 | T_equator:
GradDes I: 19 Cost J:

| T_equator:

261.136 | T_equator:

256.338 | T_equator:

299.613

.717483

300.157

.872432

300.672

.221896

300.729

.000001

300.729

.000000

ICE_LINE

XXS: Q.

ICE_LINE
XXS: -0

ICE_LINE

XXS: -0.

ICE_LINE
XXS: -0

ICE_LINE
XXS: -9

.176125

.176135

IN DEGREES
000000

NORTHERN HEMISPHERE:

IN DEGREES NORTHERN HEMISPHERE:

.093027

IN DEGREES
168211

NORTHERN HEMISPHERE:

IN DEGREES IN NORTHERN HEMISPHERE:

IN DEGREES IN NORTHERN HEMISPHERE:

71



icinpcialuic { L)

Tuned results

Budyko-Sellers Steady-State Surface Temperature

20 A

10 A

-10 A

—— Final Surface Temperature D = 0.6
—— Final Surface Temperature D = 0.424
——~- Freezing Point

-90

75 60 -45 -30 -15 0 15 3
Latitude (degrees)

Albedo

Budyko-Sellers Albedo (Linear Temperature-Dependent)

0.55

0.50 1

0.45

0.40 A

0.35

0.30 A

0.25 1

0.20 A

-90

=75

-60

-45

-30

15 0 15
Latitude (degrees)

72



Thank you!



A glimpse into utility of TLM and adjoint for UQ

77



A glimpse into Uncertainty Quantification

T =5y~ )Tl (y — d) = 5 (Ax) — ) Tk, (ARx) — d)

1
2



A glimpse into Uncertainty Quantification

J = (y d)' Ty (y —d) = —(A(X)—d)TFJata(A(X)—d)

8(x) = 97 = A(X) Tk (A() - d)



A glimpse into Uncertainty Quantification

= 50— )Tk, (y — ) = 5 (AG) — )Tk, (4G9

—d)



A glimpse into Uncertainty Quantification

T = 5 = TTgh, (v — d) = (A — d)T T3, (4G - d)

N/ _
g(x) = 5 = A(x)" T gpa (A(x) — d)
0*J T—1
H(x) = A(x)" T, A(x) + SCARY 3rd order tensor




A glimpse into Uncertainty Quantification

T = 5~ Tk, v — d) = (400 - )Tk, (AG) - @

data data
N

g(x) = 5 = A(x)" T gya(A(x) — d)
_ 97 _ Ax)TTIL A A d ord A d
H(x) = B (x)" 'y, A(x) + SCARY 3rd order tensor x (A(x) —d)




A glimpse into Uncertainty Quantification

T =5y~ )Tk (y — d) = £ (A(x) — )T, (A(x) - d)

N

g(x) = 5 = A(x)" Ty (Ax) — d)
27
H(x) EZ))CQ = A(x)"T;. A(x)+ SCARY 3rd order tensor x (A(x)

/N I

_d)

83



A glimpse into Uncertainty Quantification

1 _ 1 _
J = 5(3’ —d)" T, (y —d) = §(A(X) —d)" T (Ax) — d)
0T _
809 = 97 = A()TT3L, (A0 — @
T 0
H(x) = —— = A(x)"T';. A(x) + SCARY 3rd order tensor XM

)

Adjoint TLM Gauss-Newton approximation

84



Example: Antarctic lce Sheet basal sliding coefficient (Isaac et. al (2015))
Objective

For a steady-state Stokes model for ice sheet flow, can the basal sliding coefficient below the Antarctic
ice sheet be constrained using InSAR surface velocity observations?

180

Observed surface velocity (Rignot et al., 2011)

Figure: InSAR surface velocity data.

Figure: Surface velocity data from Rignot et al. 2011.



Example: Antarctic Ice Sheet basal sliding coefficient (Isaac et. al (2015))

Deterministic solution

Optimal inferred basal sliding coefficient field that reduces model-data misfit.

exp(B)'/?
[(Pa/(km/a))'/?]
000

Figure: Inferred basal sliding coefficient



Example: Antarctic Ice Sheet basal sliding coefficient (Isaac et. al (2015))

Uncertainty Quantification (Bayesian probabilistic perspective)

Confidence in our inferred parameter field.

std. dev. of

8

0,050

Figure: Prior and posterior point-wise marginal uncertainties



