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O Global mean sea surface temperature (GMSST) is a variable of primary
interest in studies of climate variability and change

GMSST essential in characterizing surface climate

O Temporal evolution of GMSST can be influenced by heat flux forcing at

the air-sea interface (F) and by diffusion (D) and advection (A) processes
internal to the ocean

To what extent can A affect balance between F and D?

0 Determining these different factors can provide insight on the nature of
air-sea interactions and climate processes

Surface climate controlled by internal heat redistribution?

O Calculations of F, D, A from data alone are prone to large uncertainties
and plagued by difficulties in getting a closed heat budget

2l Can we gain insight into the nature of GMSST variability
using a state estimate that fits most features of the
observed GMSST behavior, while providing a closed heat

budget in terms of F, D, A consistent with evolution of
GMSST?
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1 Examine the latest global state estimate produced by the

consortium for Estimating the Circulation and Climate of the Ocean
(ECCO version 4; Forget et al., 2015, Geo. Model Dev.)

1 Release 3 fields available for period 1993-2015

 Constrained to most available data (in situ T+S, satellite SST,
altimetry, GRACE, Aquarius)

O Fit to data by adjusting initial conditions, boundary forcing, and
internal mixing coefficients within prescribed uncertainties

1 Solution of free running MITgcm with no hidden sources or
sinks of heat and a closed heat budget on the model grid

0 Explore GMSST budget (in time integrated form)
GMSST=A+D+F

where SST taken to be temperature in 10-m thick top layer in
solution



Research and Development Division — Oceanography Group B 000 |

CCl Budget fields (mean and trends)

b. Forcing (°C yr )

Time mean terms
(tendency space)

GMSST trends (°Clyr)

Data: 8.8x103
ECCO: 4.2x103
Forcing: -28.79

Diffusion: 23.52
Advection: 5.27

G Advectlon (°C yr- 1)

O For time mean, forcing mostly cools surface (except near equator and some
higher latitudes), balanced by warming effects from diffusion and advection

0 Small imbalances in the time mean terms give rise to weak positive trend in
GMSST with advection weaker but important for the budget
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a. ECCOv4r3 SST versus SST data

- == Estimate —— Observations
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b. ECCOv4r3 SST budget
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SST data from Reynolds et al. (2002, J. Climate)
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GMSST (detrended fields)

ECCO estimate of GMSST
consistent with observations

Large annual cycle in F, D but
visible semi-annual cycle in
GMSST

Interannual and longer time
scale variability relatively
weaker
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a. ECCO vs. Data (seasonal)
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Mean seasonal cycle

d

Good qualitative agreement between
amplitude/phase of mean seasonal
cycle in ECCO estimate and data

Main balance between forcing and
diffusion

Small residual responsible for
seasonal cycle, advection negligible

Semi-annual cycle in GMSST

Small differences in phase and
amplitude of F, D

GMSST can follow behavior of D (e.g.,
over July-October) rather than F
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Trends and annual+semiannual cycle removed

a. ECCOvA4r3 SST versus SST data (nonseasonal)
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b. ECCOv4r3 SST budget (nonseasonal)
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Nonseasonal variability

ECCO fit to the data excellent
at interannual and longer time
scales

El Nino, La Nina signals well
captured

Balance between F and D still

clear for interannual variability
but...

...advection also important
(e.g., 1997-98 EIl Nino, decadal
variations)
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Frequency analysis T vs. F+D

Relation between forcing+diffusion
and GMSST

a. Coherence Squared

0.75 |
0.5 |
0.25 | 1 U Close correspondence between F+ D
Y ‘ and GMSST at annual and semi-
180 b. Phase of Coherence annual periods
90 | 1 [ Results for most other periods,
0| R as particularly > 1 year, imply non-
-90 ‘ negligible effects of advection
-180 '

, c. Admittance Amplitude

1.5 :
;| .——M
0.5 ¢
0 |
1071 10°

Freq. (cyc. per year)



Research and Development Division — Oceanography Group B 0 |
Frequency analysis Fvs. D

Relation between forcing and
diffusion

a. Coherence Squared
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b. Phase of Coherence d D coherent with and larger than F at
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Frequency analysis

Power spectra of all budget terms and residual
temperature (ECCO minus data)
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Some conclusions

 Physically consistent state estimates (free solutions of a model
constrained by data) make it possible to explore mechanisms
responsible for GMSST variability

1 Expected balance between surface heat flux and mixing is clear at
the seasonal time scale, but advection is not negligible particularly
at periods longer than one year

d GMSST not simply tracking surface heat flux effects with diffusion
mitigating the forcing (e.g., semi-annual periods)

 Advection plays a visible role in the GMSST budget but there are
no instances where it seems to dominate the variability in GMSST
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a. ECCOv4r3 SST versus SST data (nonseasonal)

- === Estimate —— Observations

b. ECCOv4r3 SST budget (nonseasonal)
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Effects of nonseasonal winds

Climatological wind stress forcing

a. ECCOvA4r3 SST versus SST data (nonseasonal)
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b. ECCOv4r3 SST budget (nonseasonal)
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L Observed evolution of GMSST reproduced without any nonseasonal wind
stress forcing

U Heat flux forcing differences relate to impact of wind forcing on SST
U Differences in F mostly compensated by changes in D
O Decadal variability in A not primarily controlled by wind forcing
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acer Top 100m budget (mean, trends)

b Forcing ((’C yr~1)

Time mean terms
(tendency space)

0 GMSST trends (°Clyr)

ECCO: 0.0026
Forcing: -0.0267

Diffusion: 0.2637
Advection: -0.2344

& Advectlon (°C y1 .

0 Top 100m global mean temperature warmed by diffusion, cooled by
advection and forcing!

0 Forcing trend becomes positive if integrated over top 150m (influence of
small shortwave radiation flux)
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aer Top 100 m (detrended fields)

T(O)

O Annual cycle in near-surface
global mean temperature
driven by F, D much less
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O[SIfl Mean seasonal cycle (top 100 m)

a. ECCO vs. Data (seasonal)
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Trends and annual+semiannual cycle removed

O[Sl Nonseasonal variability (top 100 m)

ek ECCOv4r3 top 100 m versus SST data (nonseasonal) O Interannual variability in
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temperature over top 100 m
tracks observed GMSST

0 Top 100 m temperature follows
advection to a large extent,
particularly over some El
Nino/La Nina events



