

A Brief Introduction to State Estimation & ECCO

What is State Estimation?

"State Estimation" is data analysis using models.

A process to estimate the <u>state</u> of a <u>dynamic system</u> by combining observations with a <u>theoretical model</u> in a mathematically principled framework.

temperature salinity velocity sea level

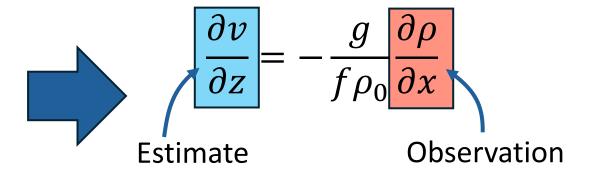
General Circulation Model

Ocean

Related to "Data Assimilation."

Data Analysis Using Models (1/2)

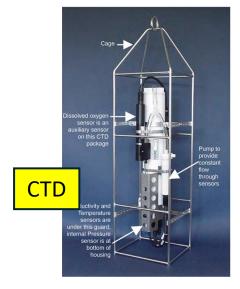
"Geostrophic Calculation" aka "Dynamic Computation"

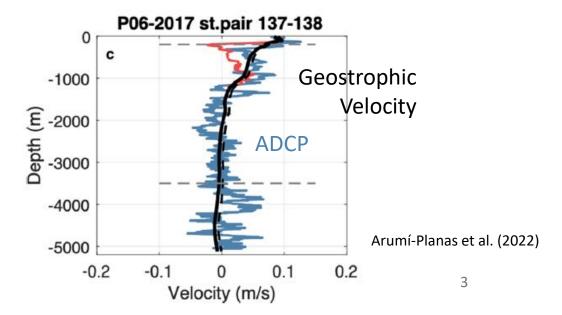

Sandstrom, J.W., and B. Helland-Hansen (1903), "Uber die Berechnung von Meeresstromungen," Report on Norwegian Fishery and Marine Investigations 2 (No. 4).

Geostrophic balance

Hydrostatic balance

$$-fv = -\frac{1}{\rho_0} \frac{\partial p}{\partial x}$$


$$\frac{\partial p}{\partial z} = -\rho g$$

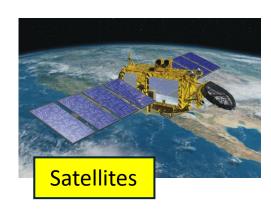


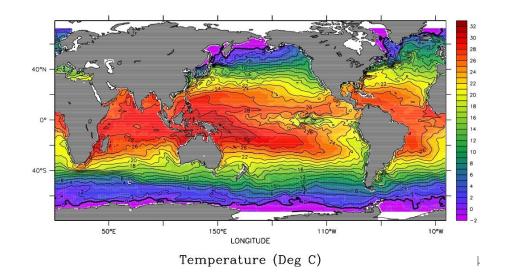
Observations (T, S, P)

Nansen water bottles before, during, and after reversing.

Data Analysis Using Models (2/2)

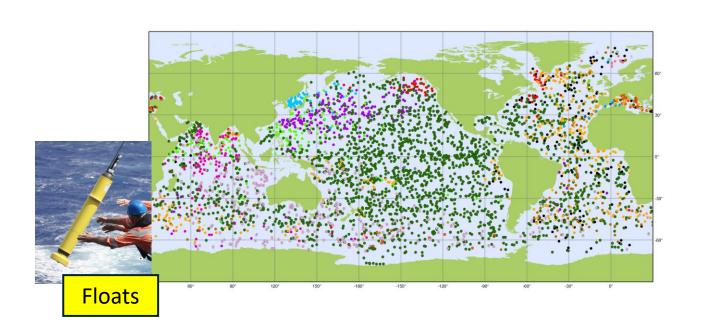

"State Estimation"

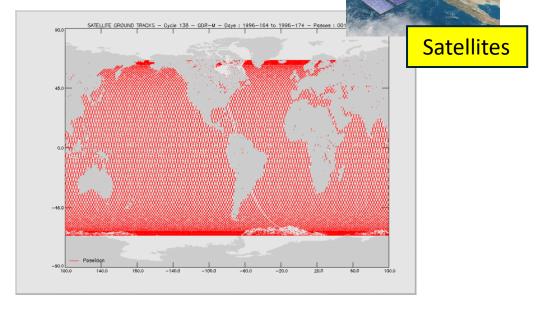

Wunsch, C., & Heimbach, P. (2007). Practical global oceanic state estimation. Physica D-Nonlinear Phenomena, 230(1–2), 197–208. https://doi.org/10.1016/j.physd.2006.09.040



$$\left[\frac{\partial u}{\partial t}\right] + \left[u\frac{\partial u}{\partial x}\right] + \left[v\frac{\partial u}{\partial y}\right] + \left[w\frac{\partial u}{\partial z}\right] - fv = -\frac{1}{\rho_0}\left[\frac{\partial p}{\partial x}\right] + \nabla \cdot A\nabla u + \tau_x$$

Observations (T, S, U, V, P)

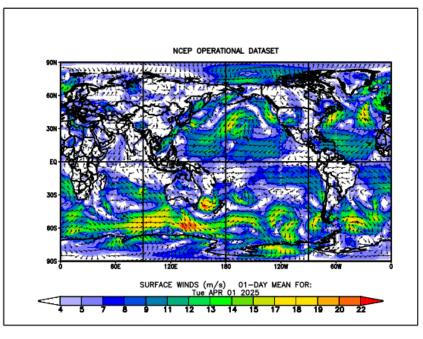




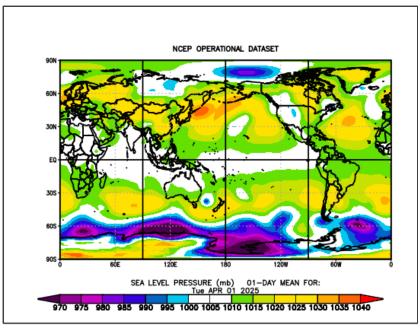
Observations/Estimates

Motivator for State Estimation (1/3)

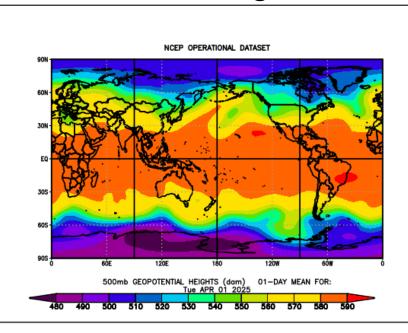
Observations are sparse, intermittent, and are limited to a few variables.



Use general circulation models to interpolate/extrapolate the observations into complete descriptions of the ocean.

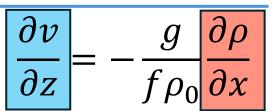

Motivator for State Estimation (2/3)

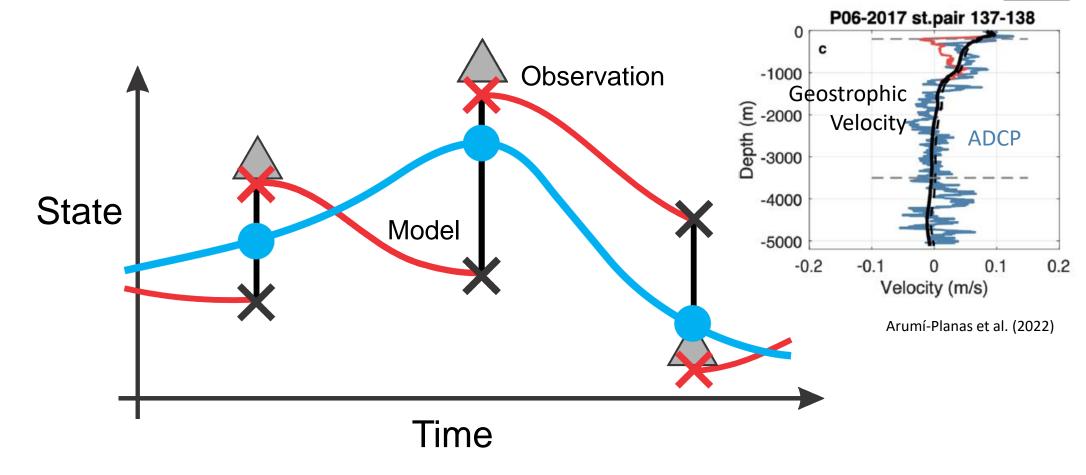
Weather Analyses (NCEP)


Surface Winds

Surface Pressure

500 hPa height


https://psl.noaa.gov/data/histdata/


Reanalyses

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Motivator for State Estimation (3/3)

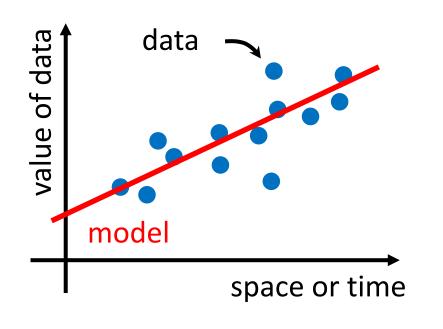
Data Assimilation vs State Estimation

What is ECCO?

Estimating the Circulation and Climate of the Ocean

https://ecco-group.org

A consortium to estimate ocean circulation and its role in climate that are consistent with nearly all types of observations and a state-of-the-art ocean circulation model.



How State Estimation is Conducted

The problem is mathematically equivalent to curve fitting.

- Inverse Theory
- Estimation Theory
- Control Theory

Adjoint Method (aka 4D-Var)

Minimize model-data differences by adjusting the model's controls using gradients computed by the model's adjoint.

e.g., forcing, initial condition, mixing parameters

What is an Adjoint Model? (1/2)

Adjoint is a transformation used in studying mathematical relationships.

Given a model
$$a = \mathcal{F}(x)$$
 and "cost" $J \equiv J(a)$, what is $\frac{\partial J}{\partial x}$?

Given the adjoint
$$\hat{x} = \hat{\mathcal{F}}(\hat{a})$$
 and $\hat{a} \equiv \frac{\partial J}{\partial a}$, then $\hat{x} = \frac{\partial J}{\partial x}$.

Adjoint Method (aka 4D-Var)

Minimize model-data differences I by adjusting the model's controls using gradients compute $\underline{\partial}I$ by the model's adjoint.

10

What is an Adjoint Model? (2/2)

Algorithmic Differentiation (AD)

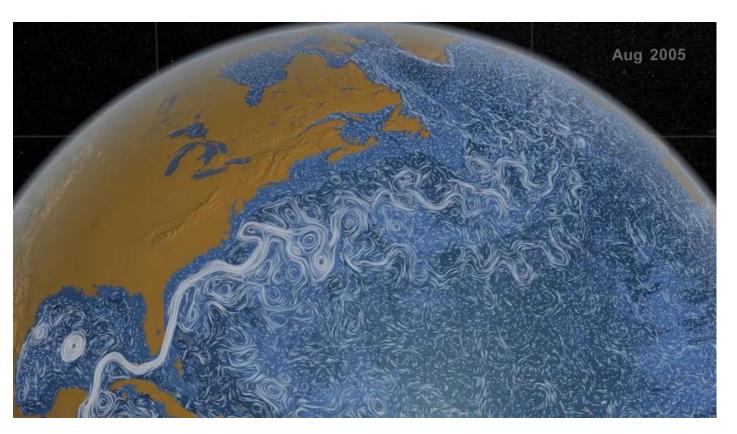
$$\binom{\text{gt}}{\text{gtnm1}} = \binom{3/2}{1} - \binom{-1/2}{0} \binom{\text{gt}}{\text{gtnm1}}$$

$$\begin{pmatrix} \mathbf{gt} \\ \mathbf{gtnm1} \end{pmatrix} = \begin{pmatrix} 3/2 & -1/2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{gt} \\ \mathbf{gtnm1} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{\widehat{gt}} \\ \mathbf{gtnm1} \end{pmatrix} = \begin{pmatrix} 3/2 & 1 \\ -1/2 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{\widehat{gt}} \\ \mathbf{gtnm1} \end{pmatrix}$$

Forward Code

Adjoint Code


```
ab_ad = ab_ad + gt_ad
gt _ad = gt _ad + gtnm1 ad
gtnm1_ad = 0.
gt _ad = gt _ad + ab_ad *0.5
gtnm1_ad = gtnm1_ad - ab_ad *0.5
ab_ad = 0.
```

AD Tools can automatically translate code source-to-source; e.g., TAF, Tapenade

Model used by ECCO: MITgcm

Massachusetts Institute of Technology General Circulation Model

https://mitgcm.org/

- A state-of-the-art GCM for atmosphere, ocean, and climate,
- Flexible non-hydrostatic formulation for broad applications,
- Adjoint capabilities for sensitivity studies including state estimation.

Observations Used in ECCO

ECCO Version 4 Release 4

variable	observations	
Sea Level	TOPEX/Poseidon (1993-2005), Jason-1 (2002-2008), Jason-2 (2008- <mark>2017</mark>), Jason-3 (2016-2017), Geosat-Follow-On (2001-2007), CryoSat-2 (2011- <mark>2017</mark>), ERS-1/2 (1992-2001), ENVISAT (2002-2012), SARAL/AltiKa (2013- <mark>2017</mark>)	
Temperature	Argo floats (1995-2017), XBTs (1992-2017), CTDs (1992-2017), marine mammals (APB 2004-2017), gliders (2003-2017), Ice-Tethered Profilers (ITP, 2004-2017), moorings (1992-2017)	
Salinity	Argo floats (1997-2017), CTDs (1992-2017), APBs (2004-2017), gliders 2017), ITPs (2004-2017), moorings (1992-2017)	(2003-
SST	AVHRR (1992- <mark>2017</mark>)	
Sea surface salinity	Aquarius (2011-2015)	
Sea-Ice Concentration	SSM/I (1992-2009), SSMIS (2006-2017)	
Ocean bottom pressure	GRACE (2002- <mark>2016</mark>)	
TS Climatology	World Ocean Atlas 2009	
Mean Dynamic Topography	DTU17 (1993-2015)	
	Sea Level Temperature Salinity SST Sea surface salinity Sea-Ice Concentration Ocean bottom pressure TS Climatology Mean Dynamic	TOPEX/Poseidon (1993-2005), Jason-1 (2002-2008),

ECCO State Estimates

https://ecco-group.org/products.htm

ECCO Central Estimate

ECCO's flagship multi-decadal global ocean circulation estimate

ECCO-Darwin

Global eddy-permitting coupled biogeochemical-ocean estimate

ASTE

Eddy-permitting Arctic-North Atlantic estimate

B-SOSE

Eddy-permitting coupled biogeochemical-ocean estimate of the Southern Ocean

CASE, TPOSE, GoM, NWPAC

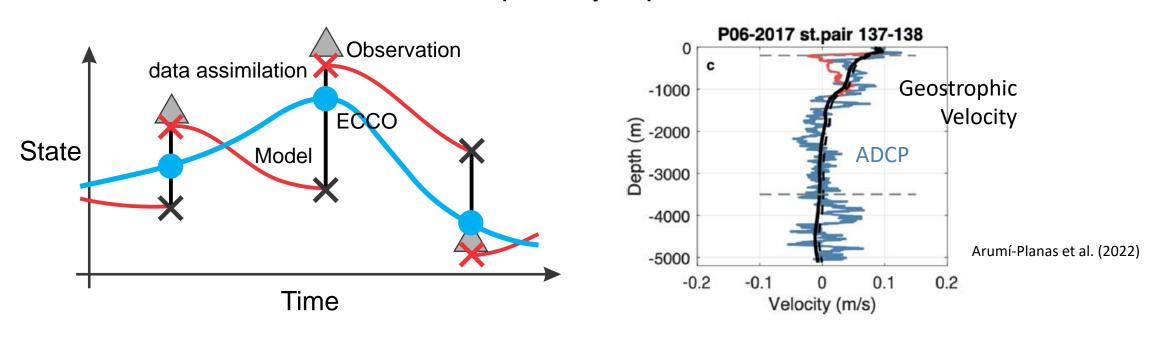
Eddy-resolving regional estimates

What Good is ECCO's State Estimate? (1/4)

ECCO provides complete descriptions of the ocean.

"Standard Output"

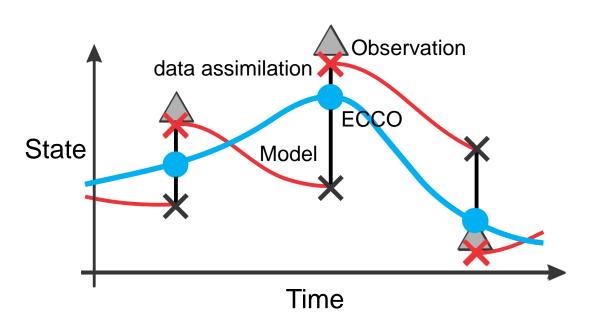
- Monthly mean UVTS, ssh, OBP
- Daily mean ssh, OBP


"Extended Output"

- Control estimates (e.g., forcing)
- Fluxes for budget analysis
- Re-gridded latitude-longitude fields
- Daily mean UVTS

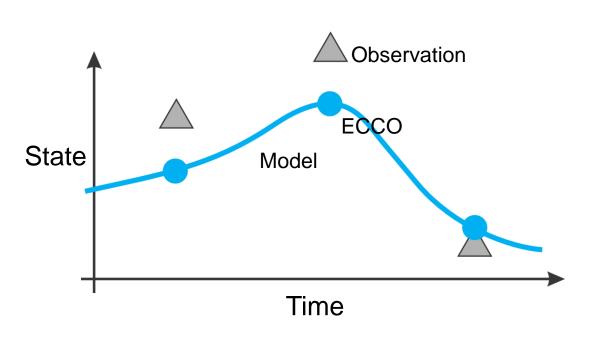
What Good is ECCO's State Estimate? (2/4)

Estimates are largely consistent with observations.


Estimates do not necessarily match observations because of uncertainties, especially <u>representation error</u>.

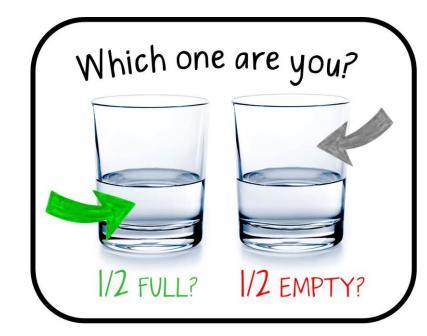
Examples: missing model physics (ageostrophic motion, subgridscale variations), errors caused by unadjusted controls.

What Good is ECCO's State Estimate? (3/4)


Estimates are physically consistent.

- Estimated state is a solution of the model (e.g., non-divergent circulation),
- Property budgets can be closed,
- The physics controlling the state is described by the model.

What Good is ECCO's State Estimate? (4/4)


Why should you trust the solution?

- Estimates are based on first principles under clearly stated assumptions,
- Observations limit undue corrections to model controls,
- The solutions being consistent with nearly all extant observations gives confidence in the estimates' fidelity,
- The scientific method dictates that an estimate that is consistent with both observations and theory cannot be dismissed.

Where do we go from here?

- Analyze state output
 - Investigate budgets
 - Interrogate model
 - Exploit adjoint

- Improve model
- Add more observations
- Extend analysis period
- Refine optimization

© 2025 California Institute of Technology. Government sponsorship acknowledged