
ECCO Dataset Production

Greg Moore (greg.moore@jpl.nasa.gov)

Ian Fenty (ian.fenty@jpl.nasa.gov)

ECCO Annual Meeting

UT Austin Oden Institute for Computational Engineering and Sciences

March 20-22, 2024

mailto:greg.moore@jpl.nasa.gov
mailto:ian.fenty@jpl.nasa.gov

Challenge:

• Dataset production automation to support real-time and quick-look distribution
in local-, super-, and cloud-compute domains

• General applicability to all MITgcm-based models (regional models, custom grids,
etc.)

• Simplified deployment to support wider audience:
• Standard Python distribution: git clone + pip install

• Docker/Singularity images

Goals:

Rapid Production of ECCO results in native and lat/lon NetCDF format for cloud-
based general distribution via PO.DAAC

Background:

• ECCO Central State Estimate compute considerations (V4r4/V4r5, LLC 90):
• Input variable type counts:

• 131 standard physical model, 40 biogeochemical model

• Output file type counts:
• 131+40 native, 40 lat/lon

• Frequency:
• Daily mean, monthly mean for 32 years

• Total file counts:
• Input:

• ~ 2.0 M files (171 variables * 365 days/year * 32 years)
• 16.4 TB total input (15.9 TB daily mean + 0.5 TB monthly mean)

• Output:
• ~ 2.5 M files ((171 native + 40 latlon) * 365 days/year * 32 years)
• 22 TB native + latlon

• Rough i/o estimates:
• 3D field files are ~50x larger than 2D field files
• 63 of 131 standard physical model fields and 36 of 40 BGC are 3D
• ~(100/170) 3D files * 2.0M * 1 sec/rw = ~ 650 hours

Background, cont:

• For V5, LLC 270:
• File counts remain the same, but V5 file sizes are ~9x larger:

• ~ 6000 i/o hours

• ~ 150 TB input

• ~ 200 TB output

• Efficient, flexible approach for dealing with current, expected compute loads and
distribution formats is essential

Current effort builds on prior work:

• “V 1.0”:
• ECCOv4-py (https://github.com/ECCO-GROUP/ECCOv4-py) (Forget, Fenty)
• Core functionality for generating native and latlon publication-ready NetCDF4 files
• Funded by NASA ACCESS Program in 2017

• “V 2.0”:
• ECCO-Dataset-Production (https://github.com/ECCO-GROUP/ECCO-Dataset-Production) (Duncan Bark)
• Migrated V 1.0 to AWS

• Data storage in AWS S3
• Parallel job submittal via AWS Lambda (“serverless compute”)

• Limitations:
• AWS Lambda instance limitations (10GB memory, 10GB container image, 15 minute function

timeout)
• S3 sync overhead
• Manual config/install limited portability

https://github.com/ECCO-GROUP/ECCOv4-py
https://github.com/ECCO-GROUP/ECCO-Dataset-Production

Current effort: “V 3.0”

• Addresses V 2.0 limitations, anticipates future compute requirements:

• Code has been reconfigured to support:

• Standard Python setuptools-based deployment

• ECCO utilities included as git submodules, package imports

• Virtual environment (python –m venv <env>) or base installation

• Containerized distribution

• ”app”-oriented usage (mapping factor generation, AWS S3 sync, job submittal, etc.)

Current effort “V 3.0”, cont:

• AWS Cloud implementation:

• Batch/Fargate/ECS to overcome Lambda
limitations:

• Batch – queuing, scheduling, provisioning,
compute instance management

• Fargate – container-based “serverless”
solution

• ECS – container orchestration

• S3 – object store

Current effort: “V 3.0”, cont.

• Status:

• Completed:
• Python packaging

• Parallel AWS S3 sync and 2D/3D mapping factor applications

• Docker container deployment via AWS ECR

• AWS authorization/certificate abstraction to run in/outside of JPL domain
(e.g., free tier accounts)

• In progress:
• Abstraction of data store/fetch for AWS/non-AWS environments

• Batch/Fargate orchestration deployment

• Expected release:
• ASAP this quarter!!!

