

Subsea cable observing system design with regional models

Matthew Goldberg ¹ Patrick Heimbach ^{1,2,3} Karen Renninger-Rojas ⁴ David Trossman ⁵

¹The University of Texas at Austin Oden Institute

 $^2\ensuremath{\,{\rm The}}$ University of Texas at Austin Jackson School of Geosciences

³The University of Texas at Austin Institute for Geophysics

 $^{4}\mbox{Louisiana}$ State University Department of Ocean and Coastal Science

 $^5 \mathrm{University}$ of Maryland Earth System Science Interdisciplinary Center

ECCO Annual Meeting March 21, 2024

1. SMART cables

2. Bottom pressure anomaly

3. Observing system assessment

Deep Ocean Observing

Figure 1: Proposed SMART sensor locations [Howe et al., 2019].

- Ocean observing system: *in situ* (buoys, moorings, ships) and remote (satellite)
- Deep ocean relatively unobserved/undersampled
- Proposed global network of scientific sensors "piggybacking" telecommunications cables on the ocean floor

SMART Cables

1. SMART cables

2. Bottom pressure anomaly

3. Observing system assessment

Bottom pressure anomaly and wind

- Wind stress dominates seasonal bottom pressure changes relative to other atmospheric controls [Fukumori et al., 2015][Chen et al., 2023].
- During bottom pressure data assimilation, wind stress controls will receive the strongest adjustments
- In turn, constrain geostrophic transport

Consider the Qol of bottom pressure:

$$\mathcal{J}(t) = p_b$$

and it's monthly mean anomaly

$$\delta \mathcal{J}(t) = p_b - \overline{p_b}$$

Taylor series reconstruction using gradients w.r.t weekly forcing anomalies ϕ_i

$$\widetilde{\delta \mathcal{J}}(t) = \sum_{i} \sum_{\mathbf{x}} \sum_{\Delta t} \frac{\partial \mathcal{J}}{\partial \phi_i(\mathbf{x}, \Delta t)} \delta \phi_i(\mathbf{x}, t - \Delta t)$$

Q: Can we demonstrate the wind stress-bottom pressure connection at higher frequencies?

Consider the Qol of bottom pressure:

$$\mathcal{J}(t) = p_b$$

and it's monthly daily mean anomaly

$$\delta \mathcal{J}(t) = p_b - \overline{p_b}$$

Taylor series reconstruction using gradients w.r.t weekly hourly forcing anomalies ϕ_i

$$\widetilde{\delta \mathcal{J}}(t) = \sum_{i} \sum_{\mathbf{x}} \sum_{\Delta t} \frac{\partial \mathcal{J}}{\partial \phi_i(\mathbf{x}, \Delta t)} \delta \phi_i(\mathbf{x}, t - \Delta t)$$

Q: Can we demonstrate the wind stress-bottom pressure connection at higher frequencies?

1. SMART cables

2. Bottom pressure anomaly

3. Observing system assessment

Observing System Simulated Experiments (OSSEs)

- Nature run
 - High resolution, high fidelity
 - Source of synthetic SMART data
 - Instrument, representation error
- Base/data assimilation model
 - Coarser, differing physics
 - Optimizable

Figure 2: Regional of interest encompassing islands of Vanuatu and New Caledonia.

Base model-nature run comparison

	base model	nature run
Horiontal grid spacing [degrees]	1/6	1/48
Vertical levels	50	90
Surface level thickness [meters]	10	1
Atmospheric forcing	6-hourly ECMWF analysis 0.14-degree grid bulk for- mulae/relative wind	6-hourly ERA-interim anal- ysis 0.7-degree grid bulk formulae
Atmospheric load	No	Yes
Tides	No	Yes
Barotropic time-stepping	Adams-Bashforth	Crank-Nicolson
Time step [seconds]	120s	25s

Table 1: Comparison of regional model to nature run [Gallmeier et al., 2023].

Synthetic data: vertical representation

Synthetic data: horizontal representation

Nature Run Field

Figure 4: Representing a nature run observation (single pixel) in a coarser model (grey squares) requires we carry some notion of representation uncertainty.

Observing System Simulated Experiments (OSSEs)

 $\mathbf{D}\mathbf{A}$ _ _ _ _ _ _

150°E 155°E 160°E 165°E 170°E 175°E

Example OSSE: Two temperature sensors

Example OSSE: Two temperature sensors

OSSE result: Skill score comparison

$$\mathsf{MSD}(x,y) = \frac{1}{n} \sum_{i=1}^{N} \left[(x_i - \langle x \rangle) - (y_i - \langle y \rangle) \right]^2$$

Normalized MSD relative to reference experiment is then

$$\mathsf{MSD}_{\mathsf{NORM}} = \frac{\mathsf{MSD}_{\mathsf{TRIAL}}}{\mathsf{MSD}_{\mathsf{REF}}}$$

and a skill score is assigned:

 $S = 1 - MSD_{NORM}$.

For our example, we compute MSD of SST

$$MSD_{NORM} = \frac{MSD(SST_{TRIAL}, SST_{NR})}{MSD(SST_{REF}, SST_{NR})}$$

Figure 6: Regional of interest encompassing islands of Vanuatu and New Caledonia.

Uncertainty Quantification

- Endow parameters with notion of (e.g. Gaussian) uncertainty
- Curvature of misfit cost function provides data-informed directions
- Project Qol sensitivities onto data-informed subspace
- Compute dynamic proxy potential, i.e. Qol uncertainty reduction in the face of new data [Loose and Heimbach, 2021]

References I

Chen, L., Yang, J., and Wu, L. (2023).

Topography effects on the seasonal variability of ocean bottom pressure in the north pacific ocean. 53(3).

Publisher: American Meteorological Society Section: Journal of Physical Oceanography.

Fukumori, I., Wang, O., Llovel, W., Fenty, I., and Forget, G. (2015).

A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the arctic ocean and the nordic seas.

Progress in Oceanography, 134:152–172.

Gallmeier, K., Prochaska, J. X., Cornillon, P., Menemenlis, D., and Kelm, M. (2023).

An evaluation of the IIc4320 global-ocean simulation based on the submesoscale structure of modeled sea surface temperature fields.

Geoscientific Model Development, 16(23):7143-7170.

Howe, B. M., Arbic, B. K., Aucan, J., Barnes, C. R., Bayliff, N., Becker, N., Butler, R., Doyle, L., Elipot, S., Johnson, G. C., Landerer, F., Lentz, S., Luther, D. S., Müller, M., Mariano, J., Panayotou, K., Rowe, C., Ota, H., Song, Y. T., Thomas, M., Thomas, P. N., Thompson, P., Tilmann, F., Weber, T., and Weinstein, S. (2019). Smart cables for observing the global ocean: Science and implementation. *Frontiers in Marine Science*, 6.

References II

Loose, N. and Heimbach, P. (2021).

Leveraging uncertainty quantification to design ocean climate observing systems. *Journal of Advances in Modeling Earth Systems*, 13(4).