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Deep Ocean Observing

Figure 1: Proposed SMART sensor locations [Howe et al., 2019].

• Ocean observing system: in
situ (buoys, moorings, ships)
and remote (satellite)

• Deep ocean relatively
unobserved/undersampled

• Proposed global network of
scientific sensors
“piggybacking”
telecommunications cables on
the ocean floor
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SMART Cables

SMART GRACE
frequency hourly monthly
in situ 3 7
no aliasing 3 7
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Bottom pressure anomaly and wind

• Wind stress dominates seasonal bottom pressure changes relative to other atmospheric controls
[Fukumori et al., 2015][Chen et al., 2023].

• During bottom pressure data assimilation, wind stress controls will receive the strongest
adjustments

• In turn, constrain geostrophic transport
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Adjoint Reconstruction

Consider the QoI of bottom pressure:
J (t) = pb

and it’s monthly mean anomaly
δJ (t) = pb − pb

Taylor series reconstruction using gradients w.r.t weekly forcing anomalies ϕi

δ̃J (t) =
∑
i

∑
x

∑
∆t

∂J
∂ϕi(x,∆t)

δϕi(x, t−∆t)

Q: Can we demonstrate the wind stress-bottom pressure connection at higher frequencies?
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Adjoint Reconstruction

Consider the QoI of bottom pressure:
J (t) = pb

and it’s monthly daily mean anomaly
δJ (t) = pb − pb

Taylor series reconstruction using gradients w.r.t weekly hourly forcing anomalies ϕi

δ̃J (t) =
∑
i

∑
x

∑
∆t

∂J
∂ϕi(x,∆t)

δϕi(x, t−∆t)

Q: Can we demonstrate the wind stress-bottom pressure connection at higher frequencies?
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Observing System Simulated Experiments (OSSEs)

• Nature run
• High resolution, high fidelity
• Source of synthetic SMART data
• Instrument, representation error

• Base/data assimilation model
• Coarser, differing physics
• Optimizable

Figure 2: Regional of interest encompassing
islands of Vanuatu and New Caledonia.
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Base model-nature run comparison

base model nature run
Horiontal grid spacing [degrees] 1/6 1/48
Vertical levels 50 90
Surface level thickness [meters] 10 1

Atmospheric forcing
6-hourly ECMWF analysis
0.14-degree grid bulk for-
mulae/relative wind

6-hourly ERA-interim anal-
ysis 0.7-degree grid bulk
formulae

Atmospheric load No Yes
Tides No Yes
Barotropic time-stepping Adams-Bashforth Crank-Nicolson
Time step [seconds] 120s 25s

Table 1: Comparison of regional model to nature run [Gallmeier et al., 2023].
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Synthetic data: vertical representation

Figure 3: Proposed SMART cable connecting Vanuatu and New
Caledonia, a SMART repeater situated on either side of the New
Hebrides Trench.[Howe et al., 2019]
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Synthetic data: horizontal representation

Figure 4: Representing a nature run
observation (single pixel) in a coarser model
(grey squares) requires we carry some notion
of representation uncertainty.
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Observing System Simulated Experiments (OSSEs)

nature runbase model
DA

Figure 5: OSSEs. Synthetic data extracted from the nature run are assimilated into the base model.
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Example OSSE: Two temperature sensors
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Example OSSE: Two temperature sensors
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OSSE result: Skill score comparison
Compare DA with NR fields with simple mean-
squared difference

MSD(x, y) =
1

n

N∑
i=1

[(xi − ⟨x⟩)− (yi − ⟨y⟩)]2

Normalized MSD relative to reference experiment is
then

MSDNORM =
MSDTRIAL
MSDREF

and a skill score is assigned:

S = 1− MSDNORM.

For our example, we compute MSD of SST

MSDNORM =
MSD(SSTTRIAL, SSTNR)

MSD(SSTREF, SSTNR)

Figure 6: Regional of interest encompassing
islands of Vanuatu and New Caledonia.
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Uncertainty Quantification

• Endow parameters with notion of (e.g. Gaussian) uncertainty
• Curvature of misfit cost function provides data-informed directions
• Project QoI sensitivities onto data-informed subspace
• Compute dynamic proxy potential, i.e. QoI uncertainty reduction in the face of new data

[Loose and Heimbach, 2021]
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