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Combining adjoint sensitivities and 
ECCOv4-r4 air-sea fluxes to determine 
dominant drivers of North Atlantic 
subpolar gyre variability 

… BONUS: implications for state 
estimation
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excited?


The answer: “stochastic optimals.”
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Ocean sensitivities  
are a linear estimate of 
when, where, and how 

to change an ocean 
quantity.


1° resolution MITgcm ECCO v4 
flux-forced configuration 

Adjointed to compute 
sensitivities of annual-mean 

upper 700m heat content in the 
subpolar gyre to weekly heat 

fluxes and wind stress
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Local heat fluxes are a leading driver of 
annually-averaged SPG heat content.


The leading EOF has a primarily dipolar 
structure.


The leading EDF 
has a pattern 
correlation of 94% 
with the NAO.


NAO heat flux (Wm-2; Cayan, 1992)
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The response to wind stress has a delayed peak, suggesting a role for spin-up of the subpolar gyre 
and increased ocean heat flux convergence from lower latitudes (e.g., Desbruyéres et al. 2021).
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Linearly reconstructed SPG HC 
variability from HF correlates with 
ECCOv4-r4.


Removing the leading EDF  in the 
MITgcm yields a trend in SPG HC, 
likely from missing HF feedbacks.


Superimposed on this trend is 
strong attenuation of  interannual 
ocean variability.


Wind stresses are qualitatively 
similar, without the nonlinear trend.

“Turning down” ocean variability 
in ECCOv4-r4



Relevance for state estimation

WS EDF 1 WS SO 1

p ∼ Cs

Flux adjustment 
covariance

Suggestion: Applying knowledge 
of control covariances offers a 
statistically principled way of 
smoothing control adjustments for 
state estimation.


This is important especially where 
control adjustments can be large 
(e.g., past climates).


There is also an opportunity to 
assimilate atmospheric 
observations for coupled DA by 
writing down a second Lagrange 
multiplier problem!



Conclusions and future work 
By combining adjoints and atmospheric 
statistics, we can identify atmospheric 
structures that dominate ocean variability. 

When applied to annual-mean SPG HC, NAO-
like heat flux and wind stress patterns 
dominate interannual variability through both 
passive and active ocean roles.


Caveats: Using a 1°, ocean-only, flux-forced 
model. No guarantee of significance of 
atmospheric modes estimated over short flux 
periods. Solving separately for wind stress and 
buoyancy fluxes.
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Leading EOFs show that a diversity of 
patterns contribute to North Atlantic heat 
fluxes.


For wind stress, there is a (less) notable 
seasonal cycle in variance.




Leading stochastic optimals reveal that 
local heat fluxes are a leading driver of 
annually-averaged SPG heat content.


Note the strong seasonality in sensitivity 
(“Stommel’s demon”).




Leading stochastic optimals reveal roles 
for remote wind stress forcing, 
particularly exciting equatorial and Kelvin 
waves that eventually heave isopycnals in 
the SPG (cf. Jones et al. 2018)
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